Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6007results about How to "Accurate location" patented technology

Geographic location using multiple location estimators

A location system is disclosed for commercial wireless telecommunication infrastructures. The system is an end-to-end solution having one or more location centers for outputting requested locations of commercially available handsets or mobile stations (MS) based on, e.g., CDMA, AMPS, NAMPS or TDMA communication standards, for processing both local MS location requests and more global MS location requests via, e.g., Internet communication between a distributed network of location centers. The system uses a plurality of MS locating technologies including those based on: (1) two-way TOA and TDOA; (2) pattern recognition; (3) distributed antenna provisioning; and (4) supplemental information from various types of very low cost non-infrastructure base stations for communicating via a typical commercial wireless base station infrastructure or a public telephone switching network. Accordingly, the traditional MS location difficulties, such as multipath, poor location accuracy and poor coverage are alleviated via such technologies in combination with strategies for: (a) automatically adapting and calibrating system performance according to environmental and geographical changes; (b) automatically capturing location signal data for continual enhancement of a self-maintaining historical data base retaining predictive location signal data; (c) evaluating MS locations according to both heuristics and constraints related to, e.g., terrain, MS velocity and MS path extrapolation from tracking and (d) adjusting likely MS locations adaptively and statistically so that the system becomes progressively more comprehensive and accurate. Further, the system can be modularly configured for use in location signaling environments ranging from urban, dense urban, suburban, rural, mountain to low traffic or isolated roadways. Accordingly, the system is useful for 911 emergency calls, tracking, routing, people and animal location including applications for confinement to and exclusion from certain areas.
Owner:TRACBEAM

Surgical navigation systems including reference and localization frames

A system for use during a medical or surgical procedure on a body. The system generates an image representing the position of one or more body elements during the procedure using scans generated by a scanner prior or during the procedure. The image data set has reference points for each of the body elements, the reference points of a particular body element having a fixed spatial relation to the particular body element. The system includes an apparatus for identifying, during the procedure, the relative position of each of the reference points of each of the body elements to be displayed. The system also includes a processor for modifying the image data set according to the identified relative position of each of the reference points during the procedure, as identified by the identifying apparatus, said processor generating a displaced image data set representing the position of the body elements during the procedure. The system also includes a display utilizing the displaced image data set generated by the processor, illustrating the relative position of the body elements during the procedure. Methods relating to the system are also disclosed. Also disclosed are devices for use with a surgical navigation system having a sensor array which is in communication with the device to identify its position. The device may be a reference frame for attachment of a body part of the patient, such as a cranial reference arc frame for attachment to the head or a spine reference arc frame for attachment to the spine. The device may also be a localization frame for positioning an instrument relative to a body part, such as a localization biopsy guide frame for positioning a biopsy needle, a localization drill guide assembly for positioning a drill bit, a localization drill yoke assembly for positioning a drill, or a ventriculostomy probe for positioning a catheter.
Owner:SURGICAL NAVIGATION TECH +1

System and method for servoing robots based upon workpieces with fiducial marks using machine vision

A system and method for servoing robot marks using fiducial marks and machine vision provides a machine vision system having a machine vision search tool that is adapted to register a pattern, namely a trained fiducial mark, that is transformed by at least two translational degrees and at least one mon-translational degree of freedom. The fiducial is provided to workpiece carried by an end effector of a robot operating within a work area. When the workpiece enters an area of interest within a field of view of a camera of the machine vision system, the fiducial is recognized by the tool based upon a previously trained and calibrated stored image within the tool. The location of the work-piece is derived by the machine vision system based upon the viewed location of the fiducial. The location of the found fiducial is compared with that of a desired location for the fiducial. The desired location can be based upon a standard or desired position of the workpiece. If a difference between location of the found fiducial and the desired location exists, the difference is calculated with respect to each of the translational axes and the rotation. The difference can then be further transformed into robot-based coordinates to the robot controller, and workpiece movement is adjusted based upon the difference. Fiducial location and adjustment continues until the workpiece is located the desired position with minimum error.
Owner:COGNEX TECH & INVESTMENT

Method and apparatus for remotely monitoring a site

The present invention is directed to providing systems and methods for remotely monitoring sites to provide real time information which can readily permit false alarms to be distinguished, and which can identify and track the precise location of an alarm. In exemplary embodiments, monitoring capabilities such as intrusion/fire detection and tracking capabilities, can be implemented through the use of multistate indicators in a novel interface which permits information to be transmitted using standard network protocols from a remote site to a monitoring station in real-time over preexisting communication networks, such as the Internet. A wireless network can also be established using browser encapsulated communication programs (for example, active X control, Java applets, and so forth) to transmit data packets which comply with any standard wireless local area network protocol. Communications can thereby be established between a web server embedded in a centrally located host monitoring station and a separate security panel deployed in each of the buildings to be remotely monitored. In exemplary embodiments, communications can be handed off from the centrally located host monitoring station to a mobile monitoring station (for example, to a laptop computer in a responding vehicle, such as a police or fire vehicle). The handoff can be such that direct communications are established between a security panel site being monitored and the laptop, or over, for example, a cellular network or indirect communications can be established via the host monitoring station.
Owner:NETTALON SECURITY SYST

Wireless location routing applications and archectiture therefor

A system for wirelessly locating mobile station / units (MS) and using resulting location determinations for providing a product or service is disclosed. The system is useful for routing an MS user to a plurality of desired locations, alerting an MS user to a nearby desired product or service based on satisfaction of user criteria, and providing enhanced security and 911 response. In one embodiment, the system responds to MS location requests via, e.g., Internet communication between a distributed network of location processing sites. A plurality of locating technologies including those based on: (1) TDOA; (2) pattern recognition; (3) timing advance; (5) GPS and network assisted GPS, (6) angle of arrival, (7) super resolution enhancements, and (8) supplemental information from low cost base stations can be activated, in various combinations, by system embodiments. MS location difficulties resulting from poor location accuracy / reliability and / or poor coverage are alleviated via such technologies in combination with automatically adapting and calibrating system performance according to environmental and geographical changes so that the system becomes progressively more comprehensive and accurate. Further, the system can be modularly configured for use in location signaling environments ranging from urban, dense urban, suburban, rural, mountain to low traffic or isolated roadways. Accordingly, the system is useful for 911 emergency calls, tracking, routing, people and animal location including applications for confinement to and exclusion from certain areas.
Owner:MOBILE MAVEN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products