Method and system for measuring shopper response to products based on behavior and facial expression

a technology of applied in the field of method and system for measuring the response of shoppers to products based on behavior and facial expression, can solve the problems of not being able to make a direct connection between emotion-sensitive filter responses and facial expressions, and it is almost impossible to accurately determine a person's mental response, so as to achieve accurate facial features and more robust job

Active Publication Date: 2012-07-10
PARMER GEORGE A
View PDF30 Cites 300 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011]Recent developments in computer vision and artificial intelligence technology make it possible to detect and track people's behavior from video sequences to further analyze their mental processes—intentions, interests, attractions, opinions, etc. The development in visual tracking technology makes it possible to track shoppers throughout the retail space, and to recognize their engagement and interaction with products. Facial image analysis has been especially matured, so that faces can be detected and tracked from video images, and the motion of the head and facial features can also be estimated. Especially, the head orientation and eye gaze can be measured to estimate the fine-level interest of the shopper. The facial appearance changes due to facial expression can also be measured to estimate the internal emotional state of the person. The estimated facial feature locations help to normalize the facial images, so that machine learning-based demographic classifications can provide accurate demographic information—gender, age, and ethnicity. The proposed invention aims to solve these problems under realistic scenarios where people show natural responses toward visual elements belonging to consumer products—such as product display, product information, packaging, etc. While each instance of such measurement can be erroneous, an accumulated measurement over time will provide reliable information to assess the collective response to a given visual element.
[0012]The invention adopts a series of both well-established and novel approaches for facial image processing and analysis to solve these tasks. Body detection and tracking locates shoppers and estimates their movements, so that the system can estimate each shopper's interest to or engagement with products, based on the track of movements. The direction toward which the shopper is facing can also be measured for the same purpose. Face detection and tracking handle the problem of locating faces and establishing correspondences among detected faces that belong to the same person. To be able to accurately locate the facial features, both the two-dimensional (position, size, and orientation) and three-dimensional (yaw and pitch) pose of the face should be estimated. Based on the estimated facial pose, the system normalizes the facial geometry so that facial features—eyes, iris, eyebrows, nose, and mouth—are aligned to standard positions. The estimated positions of irises relative to eyes along with the estimated head orientation reveal the shopper's direction of attention. The invention also introduces a novel approach to extract facial appearance changes due to facial expressions; a collection of image gradient filters are designed that match the shapes of facial features or transient features. A filter that spans the whole size of the feature shape does a more robust job of extracting shapes than do local edge detectors, and will especially help to detect weak and fine contours of the wrinkles (transient features) that may otherwise be missed using traditional methods. The set of filters are applied to the aligned facial images, and the emotion-sensitive features are extracted. These features train a learning machine to find the mapping from the appearance changes to facial muscle actions. In an exemplary embodiment, the 32 Action Units from the well-known Facial Action Coding System (FACS, by Ekman & Friesen) are employed. The recognized facial actions can be translated into six emotion categories: Happiness, Sadness, Surprise, Anger, Disgust, and Fear. These categories are known to reflect more fundamental affective states of the mind: Arousal, Valence, and Stance. The invention assumes that these affective states, if estimated, provide information more directly relevant to the recognition of people's attitudes toward a retail element than do the six emotion categories. For example, the degree of valence directly reveals the positive or negative attitude toward the element. The changes in affective state will then render a trajectory in the three-dimensional affect space. Another novel feature of the invention is to find a mapping from the sequence of affective state to the end response. The central motivation behind this approach is that, while the changes in affective state already contain very useful information regarding the response of the person to the visual stimulus, there can be still another level of mental process to make a final judgment—such as purchase, opinion, rating, etc. These are the kind of consumer feedbacks ultimately of interest to marketers or retailers, and we refer to such process as the “end response.” The sequence of affective state along with the shopper's changing level and duration of interest can also be interpreted in the context of the dynamics of the shopper behavior, because the emotional change at each stage of the shopping process conveys meaningful information about the shopper's response to a product. One of the additional novel features of this invention is to model the dynamics of a shopper's attitude toward a product, using a graphical Bayesian framework such as the Hidden Markov Model (HMM) to account for the uncertainties between the state transitions and the correlation between the internal states and the measured shopper responses.

Problems solved by technology

Though it is nearly impossible to accurately determine a person's mental response without directly asking about it, a person usually reveals some indications of emotional response through information channels such as facial expressions and bodily gestures.
It is not straightforward to make a direct connection between the emotion-sensitive filter responses and the facial expressions due to the complex relation between the image responses and the expressions; a large number of such emotion-sensitive feature vectors along with the ground truth expression categories are utilized to learn the relation in a machine learning framework.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and system for measuring shopper response to products based on behavior and facial expression
  • Method and system for measuring shopper response to products based on behavior and facial expression
  • Method and system for measuring shopper response to products based on behavior and facial expression

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0060]FIG. 1 is an overall scheme of the system in a preferred embodiment of the invention. The system accepts two different sources of data for processing: the facial image sequence 633 and the body image sequence 715. Given a facial image sequence 633 that potentially contains human faces, the face detection and tracking 370 step detects any human faces and keeps individual identities of them by tracking them. Using the learning machines trained from facial pose estimation training 820, the facial pose estimation 380 step then computes the (X, Y) shift, size variation, and orientation of the face inside the face detection window to normalize the facial image, as well as the three-dimensional pose (yaw, pitch) of the face. Employing the learning machines trained from the facial feature localization training 830, the facial feature localization 410 step then finds the accurate positions and boundaries of the facial features, such as eyes, eyebrows, nose, mouth, etc. Both the three-d...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The present invention is a method and system for measuring human response to retail elements, based on the shopper's facial expressions and behaviors. From a facial image sequence, the facial geometry—facial pose and facial feature positions—is estimated to facilitate the recognition of facial expressions, gaze, and demographic categories. The recognized facial expression is translated into an affective state of the shopper and the gaze is translated into the target and the level of interest of the shopper. The body image sequence is processed to identify the shopper's interaction with a given retail element—such as a product, a brand, or a category. The dynamic changes of the affective state and the interest toward the retail element measured from facial image sequence is analyzed in the context of the recognized shopper's interaction with the retail element and the demographic categories, to estimate both the shopper's changes in attitude toward the retail element and the end response—such as a purchase decision or a product rating.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]Not ApplicableFEDERALLY SPONSORED RESEARCH[0002]Not ApplicableSEQUENCE LISTING OR PROGRAM[0003]Not ApplicableBACKGROUND OF THE INVENTION[0004]1. Field of the Invention[0005]The present invention is a method and system to provide an automatic measurement of retail customers' responses to retail elements, based on their facial expressions and behaviors.[0006]2. Background of the Invention[0007]The current consumer and market-oriented economy places a great deal of importance on people's opinions or responses to consumer products or, more specifically, various aspects of the products—product display, packaging, labels, and price. A shopper's interest and attitude toward these elements changes dynamically during engagement and interaction with products, and the end response—such as purchase, satisfaction, etc.—is a final summary of such intermediate changes. Most consumer exposure to such visual cues occurs in retail spaces at an immeasurably...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): G06Q10/00
CPCG06Q30/0201G06Q30/0202G06Q30/0204G06V40/174G06V40/193G06V20/52G06V10/85G06F18/295
Inventor MOON, HANKYUSHARMA, RAJEEVJUNG, NAMSOON
Owner PARMER GEORGE A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products