Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2994results about "Photometry using reference value" patented technology

System and method for servoing robots based upon workpieces with fiducial marks using machine vision

A system and method for servoing robot marks using fiducial marks and machine vision provides a machine vision system having a machine vision search tool that is adapted to register a pattern, namely a trained fiducial mark, that is transformed by at least two translational degrees and at least one mon-translational degree of freedom. The fiducial is provided to workpiece carried by an end effector of a robot operating within a work area. When the workpiece enters an area of interest within a field of view of a camera of the machine vision system, the fiducial is recognized by the tool based upon a previously trained and calibrated stored image within the tool. The location of the work-piece is derived by the machine vision system based upon the viewed location of the fiducial. The location of the found fiducial is compared with that of a desired location for the fiducial. The desired location can be based upon a standard or desired position of the workpiece. If a difference between location of the found fiducial and the desired location exists, the difference is calculated with respect to each of the translational axes and the rotation. The difference can then be further transformed into robot-based coordinates to the robot controller, and workpiece movement is adjusted based upon the difference. Fiducial location and adjustment continues until the workpiece is located the desired position with minimum error.
Owner:COGNEX TECH & INVESTMENT

Wave front sensing method and apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Device for concentrating optical radiation

A holographic planar concentrator (HPC) for collecting and concentrating optical radiation is provided. The holographic planar concentrator comprises a planar highly transparent plate and at least one multiplexed holographic optical film mounted on a surface thereof. The multiplexed holographic optical film has recorded therein a plurality of diffractive structures having one or more regions which are angularly and spectrally multiplexed. Two or more of the regions may be configured to provide spatial multiplexing. The HPC is fabricated by: (a) recording the plurality of diffractive structures in the multiplexed holographic optical film employing angular, spectral, and, optionally, spatial multiplexing techniques; and (b) mounting the multiplexed holographic optical film on one surface of the highly transparent plate. The recording of the plurality of diffractive structures is tailored to the intended orientation of the holographic planar concentrator to solar energy. The HPC is mounted in the intended orientation for collecting solar energy and at least one solar energy-collecting device is mounted along at least one edge of the holographic planar concentrator. Examples of suitable solar energy-collecting devices include photovoltaic cells and fiber optic light guides for transmitting collected light into an interior of a building for illumination purposes and for transmitting collected solar radiation into a hot water tank for heating. The HPC permits efficient collection of solar energy without expensive requirements, while minimizing energy losses.
Owner:ILLINOIS INSTITUTE OF TECHNOLOGY

Wave Front Sensing Method and Apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Light sensor with modulated radiant polychromatic source

An apparatus is described for assessing plant status using biophysical and biochemical properties of the plant remotely sensed by the invention thereby allowing selective monitoring, elimination or treatment of individual plants. In a preferred embodiment, a single polychromatic emitter provides coincident light beams; one beam substantially in the visible portion of the spectrum (400 nm to 700 nm) and the other in the near infrared (NIR) portion of the spectrum (700 nm to 1100 nm). This light beam illuminates a small surface area on the ground, which may be bare ground, desired plants or undesired weeds. The beam of light may be focused, collimated or non-focused. A detector array, usually composed of a visible detector and a NIR detector, detects portions of this polychromatic light beam reflected by the surface area and provides a signal indicative of whether the detected light was reflected by a plant or by some non-plant object such as soil. A controller analyzes this signal and, assuming a plant is detected, responds by activating a device to take some action with respect to the plant or stores the analyzed signal with corresponding DGPS position in the controller's memory for later analysis. A number of actions may be taken by the controller. For instance, if the plant is a weed, the desired action might be to spray herbicide on the weed. Or, if the plant is a crop that is determined to be lacking in nutrient, the desired action may be to apply fertilizer. Additionally, if the plant under test is a turf landscape, such as found on golf courses and sporting fields, plant biomass may be mapped and geo-located using GPS for later, comparative analysis.
Owner:KYLE H HOLLAND TRUSTEE OF THE MARANATHA TRUST DATED JULY 30 2013
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products