Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

26822results about "Solar heating energy" patented technology

Solar array resembling natural foliage including means for wireless transmission of electric power

The present invention teaches a solar array, and also a network of solar arrays for providing energy for industrial, residential and transportation use. A solar array of the present invention can be made to resemble a palm tree, a deciduous tree, an evergreen tree, or other type of natural foliage, and meet the aesthetic demands of landscape architecture. A network of solar arrays can extend for many miles along transportation right of ways including, but not limited to, roads, highways, railways, pipelines, or canals, and can further include means for storing and transmitting energy. A solar array can include or be coupled with a recharging station for use by electric and hybrid transportation vehicles. Moreover, an individual solar array or network of solar arrays can include means for wireless communication and transmission of energy for recharging an energy storage device and provide energy to an electric or hybrid transportation vehicle.
Owner:LYDEN ROBERT M

Method and apparatus for mounting photovoltaic modules

An interlocking photovoltaic module mounting system that provides a one piece, integrated photovoltaic module frame portion that is directly mountable to a support structure and interlocks with separate adjoining photovoltaic module frame portions. The apparatus includes a frame member for enclosing the perimeter of a photovoltaic module, having an inside surface and outside surface, with the inside surface including a recess for capture of the panel. The frame member outside surface includes at least one interlocking means for affixation to the complementary outside surface of an adjacent frame-member. The frame member includes a height-adjustable foot portion for supporting the frame member on a roof, so that adjacent frame members may be interlocked to form an array, and the foot portion may be adjusted to level the formed array on the roof.
Owner:TESLA INC

Solar concentrator for heat and electricity

PCT No. PCT / NZ95 / 00084 Sec. 371 Date Feb. 28, 1997 Sec. 102(e) Date Feb. 28, 1997 PCT Filed Sep. 14, 1995 PCT Pub. No. WO96 / 08683 PCT Pub. Date Mar. 21, 1996A solar concentrator for producing usable power as heat and / or electricity uses a self-steering heliostat 1502 to concentrate solar radiation 1509 onto an absorbing surface such as, or including, a solar cell array 1511 capable of absorbing power from the radiation, meanwhile removing heat (such as from long-wave infra-red radiation or resistive losses) from the surface with fluid heat transfer means 1503, 1504, then making effective use of that low-grade heat. Thus the solar cell array is kept relatively cool and a larger proportion of the solar energy incident on the reflector unit is used. The invention uses electricity 1506 from the solar cells to move a transporting fluid through a heat exchanger 1504. Excess electricity may be available for local storage or use 1510, or feeding 1512 to the power distribution grid. Applications include warming swimming pools 1501, heating hot-water supplies using excess electricity, or warming, lighting and ventilating open spaces.
Owner:JOHNSON COLIN FRANCIS

Multi-function field-deployable resource harnessing apparatus and methods of manufacture

A multi-function, field-deployable resource harnessing apparatus 600 having, in its embodiments, an inflatable reflector apparatus 610 comprising a least one manufactured parabolic mirror made from a pressure-deformable reflective covering of an inflatable ring for focusing electromagnetic energy from radio frequency radiation (RF) through the ultraviolet (UV) radiation including solar energy for (1) heating and cooking, (2) electrical power generation, (3) enhancing the transmission and reception of radio signals, (4) enhancing vision in low-light environments, and / or (5) projection of optical signals or images. The device also has non-electromagnetic uses, such as the collection and storage of water, harnessing of energy from a fluid stream, and / or harnessing wave energy. A first main embodiment of the inflatable reflector apparatus 610 generally utilizes two pressure-deformable membranes, at least one of which is reflective. A second main embodiment utilizes a reflective membrane and a transparent membrane. In addition to the reflector apparatus 610, the modular apparatus 600 typically further includes modular assemblies to increase versatility, facilitate use, and / or enhance safety such as, for example, a modular support and orienting assembly 612, a separate support ring 614, a safety shield or cage 616, a focal point support assembly 618, a safety cover 620, a safety net or mesh 622, and a stabilizing assembly 624. Portability is enhanced by complete collapsing of the inflatable device.
Owner:ESSIG JR JOHN R +1

Photovoltaic mounting system with locking connectors, adjustable rail height and hinge lock

A cam-actuated connection device joins rail mounting members of a photovoltaic panel array. The connection device slides within channels of mounting members until the members are in a properly positioned grid. When in position, the connection device is rotated to lock the mounting members in a rigid grid network. The connecting device can be subsequently loosened, repositioned and locked into position. The rail-mounting members create a grid for installation of multiple PV panels. The mounting rail allows the unit to remain relatively compact in nature but still covers a wide range of PV panel thicknesses. The rail system has a hinged connection with the mounting rail that allows an installer to assemble the module in a near perpendicular fashion to the mounting rail, make the required electrical connections and then lower the PV module into its working position. The unit is then locked into its working position.
Owner:POWERMOUNT SYST +1

Single Axis Solar Tracking System

A solar tracking system with a torque tube supporting solar panels. Columns support the system and have bearings for rotation of the torque tube. A drive is coupled to the torque tube and is driven by a gearbox, such as a worm gear assembly, for rotating the array of solar panels to follow the sun's diurnal motion. The array can rotate in an opposite direction, or backtrack, to prevent shadowing from one module row to another. Multiple gearboxes can be mechanically linked by drive shafts and driven by a single motor. The drive shafts may incorporate universal joints for uneven terrain or staggered configurations. Harmonic dampers can be affixed to the solar panels to decouple wind forces which allows the use of larger solar panels.
Owner:ARRAY TECH

Mounting systems for solar panels

Mounting systems for mounting solar panels to a surface are disclosed and can include panel clamp assemblies and rail clamp assemblies. Panel clamp assemblies can comprise a panel clamp having a base and arms extending from edges of the base, the base having an aperture, a rail clamp having a central portion with an aperture and two flexible tabs extending from the central portion on opposing sides of the aperture and a fastener threaded through the apertures such that that flexible tabs contact a head of the fastener and the arms extend in an opposite direction from the flexible tabs. Rail clamp assemblies can comprise a base member having a bottom and two side walls, the bottom having at least one aperture and each side wall having an elongated aperture, two clamping members and a fastener, wherein the side walls of the base member are positioned such that the opening is of sufficient size to receive the rail.
Owner:APPLIED ENERGY TECH

Tracking solar power system

A tracking solar power system is disclosed. The tracking solar power system includes: a solar power substructure and a platform having a first degree of freedom. The solar power substructure is mounted on the platform in a manner such that it has a second degree of freedom relative to the platform. The solar power substructure may include a solar collector and a receiver arranged to receive energy from the solar collector. The receiver may be mounted in a manner that avoids shading of the solar collector during operation. The solar collector may have an area focus at the receiver. The solar power substructure may include a non-concentrating solar power substructure.
Owner:GREENVOLTS INC

Solar power system and method for power generation

A solar-powered power generation system and an associated method are provided. The system includes at least one trough solar absorption device for heating a heat transfer fluid to a first temperature, and at least one tower solar absorption device for further heating the transfer fluid to a second temperature. Thus, the generation system can efficiently heat the transfer fluid to high temperatures. Subsequently, the heated fluid can be used, e.g., to generate steam and / or electricity.
Owner:UNITED TECH CORP +2

Robot for Solar Farms

The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas.
Owner:BTPATENT

Illumination systems, devices, and methods for biomass production

Illumination systems, devices, and methods for cultivating biomasses. A bioreactor system is operable for growing photosynthetic organisms. The bioreactor system includes a bioreactor and an illumination system. The illumination system includes one more optical waveguides configured to light at least some of a plurality of photosynthetic organisms retained in the bioreactor. In some embodiments, the one or more optical waveguides include a plurality of structures configured to direct light energy from a solar energy collector, and a plurality of artificial light sources, along the interior of the waveguide. In some embodiments, the one more optical waveguides include a plurality of light-diffusing structures configured to guide at least a portion of the light from the solar energy collector and a plurality of artificial light sources directed along the interior of the waveguide, to the exterior of the waveguide.
Owner:BIONAVITAS

Method and System for Configuring Solar Energy Systems

A system and method of configuring solar energy systems that includes at least one processor, and a memory coupled to the at least one processor. The memory can store instructions to cause the at least one processor to 1) search one or more data sources for information, 2) store the information in a data store, 3) receive one or more images associated with a location to receive a solar energy system, 4) display the one or more images in real-time on a user interface on a display, 5) receive input data from a user interacting with the user interface, 6) process the information, images, and input data to determine parameters associated with the location, and 7) identify a useable area in the location for placement of the solar energy system based on the parameters.
Owner:TIGO ENERGY

Adjustable mounting assembly for standing seam panels

An adjustable mounting assembly (70a / 70b) for installing solar cell modules (58) on a building surface (34) is disclosed. The mounting assembly (70a / 70b) includes a mounting device (74), a stud (114) that may be threaded to the mounting device (74), a clamping member (142) that may be positioned on the stud (114), and a nut (128) that may be threaded onto the stud (114) to secure the clamping member (142) to the mounting device (74). A nut (126) is fixed to the stud (114) at an intermediate location along its length. This fixed nut (126) may be used to tighten the stud (114) to a mounting device (74), and furthermore may be positioned such that the stud (114) does not extend into a slot (90) of the mounting device (74).
Owner:RMH TECH LLC

Solar energy utilization unit and solar energy utilization system

A solar energy utilization unit comprises a solar radiation concentrating optics and a solar radiation receiver including first and second receiver components. The first receiver component is designed to convert into electric energy radiation in a first part of the solar spectrum, and the second receiver component is designed to convert into electric energy radiation in a second part of the solar spectrum different from said first part. The solar radiation concentrating optics comprises a concave primary reflector and a convex secondary reflector. The primary reflector is adapted to reflect incident solar radiation towards the secondary reflector, the secondary reflector is adapted to reflect radiation in the first part of the solar spectrum into the first receiver component and to transmit radiation in the second part of the solar spectrum into the second receiver component. The primary reflector is formed with a centrally disposed opening via which the first receiver component is adapted to receive the radiation reflected by the secondary receiver.
Owner:AEROSUN TECH

Thermochromic devices

The invention is an energy efficient, thermochromic device for windows that allows sunlight or solar radiation into a building or structure when the ambient temperature is low and substantially blocks solar radiation when the ambient temperature is high, especially when sunlight is directly on the window. Additionally, the invention is a thermochromic device useful as variable transmission shutters for use in lenses or filters.
Owner:PLEOTINT

Tracking solar shelter

The present invention comprises a tracking solar power array that provides shelter to items disposed beneath the solar power array, particularly to vehicles.
Owner:SACRED POWER CORP

Solar concentrator array with grouped adjustable elements

InactiveUS7192146B2Reduces cost and complexity and weightEasy to trackSolar heating energyMirrorsHeliostatEngineering
A ground-based tracking heliostat array comprises a first plurality of elongate row mounts. The elongate row mounts are positioned at least partially between, and are supported by, a first side bracket and a second side bracket. The row mounts are rotatable in a first axis. The array further comprises a plurality of optical elements that are mounted to one or more of the elongate row mounts. The array further comprises a linkage that is mechanically coupled to a first plurality of elongate row mounts. Movement of the linkage causes the first plurality of elongate row mounts to simultaneously rotate in the first axis. The array further comprises a motor configured to move the linkage.
Owner:CYRIUM SOLAR

Mobile power system

A mobile power system for producing power at a desired location includes a first power generating device of a first type coupled to a transportable housing, and a second power generating device of a second type coupled to the transportable housing. The first type of power generating device is different than the second type of power generating device. According to an exemplary embodiment, the mobile power system may provide easy access to different types of power outputs. Further, the housing may have the approximate size of a standard freight container.
Owner:SKYBUILT POWER

Solar concentrator array with individually adjustable elements

InactiveUS6959993B2Reduces cost and complexity and weightEasy to trackSolar heating energyMirrorsHeliostatEngineering
A tracking heliostat array comprises a plurality of optical elements. The tracking heliostat array further comprises a frame separated from the optical elements. Each of the optical elements has an orientation with respect to the frame. The tracking heliostat array further comprises a plurality of supports coupled to at least one of the optical elements. The tracking heliostat array further comprises a turnbuckle coupled to at least one of the supports and to the frame. Rotation of the turnbuckle causes the corresponding support to be displaced relative to the frame. The orientation of the optical element relative to the frame is adjustable. The tracking heliostat array further comprises a traveling actuator configured to rotate at least one of the turnbuckles. The tracking heliostat array further comprises a positioning mechanism supporting the traveling actuator. The positioning mechanism is configured to move the traveling actuator from a first selected turnbuckle to a second selected turnbuckle.
Owner:CYRIUM SOLAR

Shingle system

A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. Water resistant junctions may be formed between the bases of adjacent shingle assemblies of an array of shingle assemblies. The base may include an insulation layer underlying a water barrier. The base may also include a waterproofing element; the width and height of the barrier may be shorter than the width and height of the waterproofing element.
Owner:SUNPOWER CORPORATION

Systems for cost-effective concentration and utilization of solar energy

The present invention is primarily directed to cost-effective systems for using large reflective elements that track the sun on two axes to concentrate solar energy onto a receiver that can convert the sun's optical energy to a form usable for extensive displacement of combustion of fossil fuels. The structures of the tracker frame, tracking mechanism and tracker supports are co-optimized with the optical elements and the receiver for high efficiency, low cost, and ease of assembly, making moderate and large-scale implementations cost-competitive with fossil fuels for peak power, and, with suitable storage, for base-load power and dispatchable peaking power in sunny locations. Improvement to small-tracker two-axis systems and one-axis tracking systems that focus in two dimensions are also included, as are improvements in systems for space-based solar power.
Owner:NORMAN RICHARD

Motion-free tracking solar concentrator

An integrated solar concentrator and tracker is constructed from a beam deflector for unpolarized light in combination with a fixed optical condenser. The one-dimensional beam deflector consists of a pair of prism arrays made from a material whose refractive index can be varied by applying an electric field. Two of the one-dimensional concentrators can be arranged with their faces in contact and with their prism arrays perpendicular to construct a two-dimensional beam deflector. The intensity and distribution of an applied field modifies the refractive index of the individual prisms in order to keep direction of the deflected beam fixed as the incident beam shifts. When the beam deflector is used with the fixed concentrator the result is that the position of the focus remains fixed as the source moves.
Owner:PENDER JOHN GEORGE

Multi-function frame and integrated mounting system for photovoltaic power generating laminates

PV modules are provided that have a frame construction which permits the photovoltaic power-generating cells, DC / AC power conversion means, electrical wiring and other installation aspects to be merged into the module. The modules also are provided with means for coupling them to mounting stands whereby they can be mounted to a roof and also the frame construction is adapted to facilitate mechanically securing adjacent modules to one another.
Owner:GREENRAY

Roof mounted photovoltaic system with accessible panel electronics

A support system for photovoltaic cells upon a roof. A cell support structure is provided beneath each cell, such as in the form of a pair of brackets to form a photovoltaic panel. The panels overlap partially to function somewhat as shingles, to shed water off of the roof. A lower side wall of each photovoltaic panel has at least one port therein to selectively access a space beneath the photovoltaic cell. Photovoltaic cell electronics, such as an inverter for one or a series of cells. A door is provided in one embodiment which selectively covers the port and acts as a support for the photovoltaic cell electronics.
Owner:GANGEMI RONALD J

Mounting system for solar panels

An integrated module frame and racking system for a solar panel is disclosed. The solar panel comprises a plurality of solar modules and a plurality of splices for coupling the plurality of solar modules together. The plurality of splices provide a way to make the connected modules mechanically rigid both during transport to the roof and after mounting for the lifetime of the system, provide wiring connections between modules, provide an electrical grounding path for the modules, provide a way to add modules to the panel, and provide a way to remove or change a defective module. Connector mount assemblies are provided on the sides of the modules to simplify the electrical assembly of modules when the modules are connected together with splices and to simplify the final connection of external wiring to the module.
Owner:ANDALAY SOLAR

Technique for electrically bonding solar modules and mounting assemblies

A mounting system is provided for an array of solar modules. The mounting system includes one or more rail assemblies that extend lengthwise in a first direction to support a plurality of solar modules that comprise the array. Each of the one or more rail assemblies may be configured to compress in order to retain an edge section of one or more of the plurality of solar modules in an operable position. A conductive element may be positioned to bond the edge section of at least one of the plurality of solar modules with at least a section of the rail assembly that retains that edge section in the operable position, so as to form a conductive path for electrical current.
Owner:FTC SOLAR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products