Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

77802results about "Vehicular energy storage" patented technology

Apparatus and method of compensating for motor velocity of fuel cell vehicle

A method and apparatus that compensates for a velocity of a motor of fuel cell vehicle when a resolver is determined to have failed is provided. In particular, a wheel velocity sensor is configured to detect a wheel velocity of a driving wheel, and an ABS controller is configured to calculate an average wheel velocity and transmit the calculated average to a fuel cell controller (FCU). The FCU is configured to receive information related to the wheel velocity upon detecting that the resolver has failed, and control driving of the motor based on the data related to the wheel velocity so that the motor may maintain operation.
Owner:HYUNDAI MOTOR CO LTD

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Method and system for monitoring an energy storage system for a vehicle for trip planning

One or more embodiments may include a trip planning system for planning a trip based on the charge of an electric vehicle battery. The trip planning system may include one or more computers located remotely from an electric vehicle which may have one or more battery packs for powering the electric vehicle. The computer(s) may be configured to receive geographic parameters defining a trip and a battery charge status of the one or more electric vehicle battery packs. The computer(s) may be further configured to determine that the trip cannot be completed based on the battery charge status. The computer(s) may additionally be configured to present a battery charge requirement for completing the trip.
Owner:FORD GLOBAL TECH LLC

Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation

Disclosed is a computerized method for dispatching energy from distributed resources in a discharge event so that the energy stored in individual devices is levelized, or so that an operator request is met. Evaluation of event parameters may be deferred. The method may be utilized to dispatch energy from plug-in electric vehicles. Systems and methods to account for electricity dispatched to or from electric vehicles are disclosed. Systems and methods for incentivizing consumers to participate in a dispatch event or curtail energy use are disclosed.
Owner:GRIDPOINT

Wireless energy transfer for photovoltaic panels

Described herein are improved configurations for a wireless power transfer involving photovoltaic panels. Described are methods and designs that use electric energy from a photovoltaic module to energize at least one wireless energy source to produce an oscillating magnetic field for wireless energy transfer. The source may be configured and tuned to present an impedance to a photovoltaic module wherein said impedance enables substantial extraction of energy from said photovoltaic module.
Owner:WITRICITY CORP

Wireless energy transfer systems

Described herein are improved capabilities for a source resonator having a Q-factor Q1>100 and a characteristic size x1 coupled to an energy source, and a second resonator having a Q-factor Q2>100 and a characteristic size x2 coupled to an energy drain located a distance D from the source resonator, where the source resonator and the second resonator are coupled to exchange energy wirelessly among the source resonator and the second resonator.
Owner:WITRICITY CORP

Remote power recharge for electronic equipment

A conductorless charging and power system for electronic appliances and method for communicating power to a power receiver employing wireless energy transmission are disclosed. The remote charging system includes a power transmission unit, which transmits energy as a directional power beam, and a power receiver system that receives the transmitted energy. The power receiver system is preferably incorporated in an appliance and includes an energy receptor capable of receiving the wireless power beam and transferring the energy from the beam to an energy storage device included in the appliance. The power transmission unit receives and tracks a power request signal from the power receiver system to track the power receiver system location during energy transmission. Data streams may be incorporated into the wireless signals of the remote charging system, allowing the remote charging system to function as a communications pathway as well as a power delivery system.
Owner:PARISE RONALD J

Vehicle charger safety system and method

Wireless vehicle charger safety systems and methods use a detection subsystem, a notification subsystem and a management subsystem. The detection subsystem identifies a safety condition. The notification subsystem provides an indication of the safety condition. The management subsystem addresses the safety condition. In particular, undesirable thermal conditions caused by foreign objects between a source resonator and a vehicle resonator are addressed by sensing high temperatures, providing a warning and powering down a vehicle charger, as appropriate for the environment in which the charger is deployed.
Owner:WITRICITY CORP

Wireless power transfer within a circuit breaker

A wireless power service panel source includes power and control circuitry that receives power from a wired power connection at a position in a service panel, and generates an electronic drive signal at a frequency, f, and a source magnetic resonator configured to generate an oscillating magnetic field in response to the electronic drive signal, wherein the source magnetic resonator is configured to wirelessly transmit power to sensors in other positions within the service panel.
Owner:WITRICITY CORP

Tunable wireless energy transfer for in-vehicle applications

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with an electrically powered system that is disposed interior to a vehicle, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack

In a cordless power tool system, protection methods, circuits and devices are provided to protect against fault conditions within a battery pack that is operatively attached to a power tool or charger, so as to prevent internal or external damage to the battery pack or attached tool or charger. The exemplary methods, circuits and devices address fault conditions such as over-charge, over-discharge, over-current, over-temperature, etc.
Owner:BLACK & DECKER INC

Wireless energy transfer and continuous radio station signal coexistence

This disclosure provides systems, methods and apparatus for wirelessly transmitting power while avoiding interference with wireless communication devices. In one aspect a wireless power transmitter apparatus is provided. The wireless power transmitter apparatus includes a transmit circuit configured to wirelessly transmit power at a transmit frequency to a first receiver device. The wireless power transmitter apparatus further includes a controller circuit configured to reduce a level of emission of the transmit circuit at a determined frequency during a period of time based on information about an information signal transmitted to a second receiver device substantially at the determined frequency to be received within the period of time.
Owner:WITRICITY CORP

System and method for minimizing energy consumption in hybrid vehicles

The present invention provides a system and method relating to the operation of plug-in hybrid electric vehicles powered both by electricity from rechargeable batteries and by consumable fuel powered means, such as an internal combustion engine or a fuel cell. More particularly, the system and method of the claimed invention enable optimization of the energy cost associated with the operation of such plug-in hybrid electric vehicles, especially when the cost of recharging batteries from external electric power sources may be less than the cost of recharging batteries from the onboard consumable fuel powered means. To this end, the invention enables maximization of the use of electricity from external electric power sources and minimization of the use of electricity produced by the plug-in hybrid electric vehicle's onboard consumable fuel powered means, when the cost of recharging batteries from external electric power sources is less than the cost of recharging batteries from the onboard consumable fuel powered means.
Owner:SLINGSHOT IOT LLC

Non-contact power transmission device

An electromagnetic resonance non-contact power transmission device includes a transmitter including a transmitter resonance element having a mechanism for discretely or continuously varying a resonant frequency, a transmitter excitation element coupled to the transmitter resonance element by electromagnetic induction, and an alternating current source for applying an alternating current at the same frequency as the resonant frequency to the transmitter excitation element, and a plurality of receivers each including a receiver resonance element having a specific resonant frequency, a receiver excitation element coupled to the receiver resonance element by electromagnetic induction, and an output circuit for outputting an electric current induced by the receiver excitation element. Electric power is transmitted selectively from the transmitter to any of the receivers having different specific resonant frequencies by changing the resonant frequency of the transmitter.
Owner:SONY CORP

Tunable wireless power architectures

Described herein are improved configurations for a wireless power transfer. The parameters of components of the wireless energy transfer system are adjusted to control the power delivered to the load at the device. The power output of the source amplifier is controlled to maintain a substantially 50% duty cycle at the rectifier of the device.
Owner:WITRICITY CORP

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Smart electric vehicle (EV) charging and grid integration apparatus and methods

An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.
Owner:RGT UNIV OF CALIFORNIA

Nano graphene platelet-based composite anode compositions for lithium ion batteries

The present invention provides a nano-scaled graphene platelet-based composite material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing lithium ions; and (b) a plurality of nano-scaled graphene platelets (NGPs), wherein a platelet comprises a graphene sheet or a stack of graphene sheets having a platelet thickness less than 100 nm; wherein at least one of the particles or coating is physically attached or chemically bonded to at least one of the graphene platelets and the amount of platelets is in the range of 2% to 90% by weight and the amount of particles or coating in the range of 98% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Celestial navigation system for an autonomous robot

A navigational control system for an autonomous robot includes a transmitter subsystem having a stationary emitter for emitting at least one signal. An autonomous robot operating within a working area utilizes a receiving subsystem to detect the emitted signal. The receiver subsystem has a receiver for detecting the emitted signal emitted by the emitter and a processor for determining a relative location of the robot within the working area upon the receiver detecting the signal.
Owner:IROBOT CORP

Wireless energy transfer for vehicles

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein at least one of the first electromagnetic resonator and the second electromagnetic resonator is variable in size, and wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
Owner:WITRICITY CORP

Remote power usage management for plug-in vehicles

Methods and systems are provided for controlling the charging of onboard energy storage systems of a plurality of plug-in vehicles using a remote command center. A system for directing the charging of a plurality of remotely located plug-in vehicles is provided. The system includes a communication system configured to transmit charging authorizations to charge each of the plurality of plug-in vehicles and to receive data related to power consumption from each of the plurality of plug-in vehicles. The system also includes a controller communicatively coupled to the communication system and configured to receive the data related to power consumption and to direct the charge authorizations based thereon. A database is also included in the system and is communicatively coupled to the controller, with the database configured to store the data related to power consumption.
Owner:GENERA MOTORS LLC +1

Sender communications for wireless power transfer

A signal generator generates an electrical signal that is sent to an amplifier, which increases the power of the signal using power from a power source. The amplified signal is fed to a sender transducer to generate ultrasonic waves that can be focused and sent to a receiver. The receiver transducer converts the ultrasonic waves back into electrical energy and stores it in an energy storage device, such as a battery, or uses the electrical energy to power a device. In this way, a device can be remotely charged or powered without having to be tethered to an electrical outlet.
Owner:UBEAM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products