Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4514results about How to "Lower internal resistance" patented technology

Nano graphene platelet-based composite anode compositions for lithium ion batteries

The present invention provides a nano-scaled graphene platelet-based composite material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing lithium ions; and (b) a plurality of nano-scaled graphene platelets (NGPs), wherein a platelet comprises a graphene sheet or a stack of graphene sheets having a platelet thickness less than 100 nm; wherein at least one of the particles or coating is physically attached or chemically bonded to at least one of the graphene platelets and the amount of platelets is in the range of 2% to 90% by weight and the amount of particles or coating in the range of 98% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Hybrid anode compositions for lithium ion batteries

ActiveUS20090117466A1Superior multiple-cycle behaviorSmall capacity fadeAlkaline accumulatorsConductive materialHybrid materialSodium-ion battery
The present invention provides an exfoliated graphite-based hybrid material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing alkali or alkaline metal ions (particularly, lithium ions); and (b) exfoliated graphite flakes that are substantially interconnected to form a porous, conductive graphite network comprising pores, wherein at least one of the particles or coating resides in a pore of the network or attached to a flake of the network and the exfoliated graphite amount is in the range of 5% to 90% by weight and the amount of particles or coating is in the range of 95% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, excellent reversible capacity, and long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Nano graphene platelet-base composite anode compositions for lithium ion batteries

The present invention provides a nano-scaled graphene platelet-based composite material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing lithium ions; and (b) a plurality of nano-scaled graphene platelets (NGPs), wherein a platelet comprises a graphene sheet or a stack of graphene sheets having a platelet thickness less than 100 nm; wherein at least one of the particles or coating is physically attached or chemically bonded to at least one of the graphene platelets and the amount of platelets is in the range of 2% to 90% by weight and the amount of particles or coating in the range of 98% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Hybrid nano-filament anode compositions for lithium ion batteries

This invention provides a hybrid nano-filament composition for use as an electrochemical cell electrode. The composition comprises: (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network comprising substantially interconnected pores, wherein the filaments have an elongate dimension and a first transverse dimension with the first transverse dimension being less than 500 nm (preferably less than 100 nm) and an aspect ratio of the elongate dimension to the first transverse dimension greater than 10; and (b) micron- or nanometer-scaled coating that is deposited on a surface of the filaments, wherein the coating comprises an anode active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 20 μm (preferably less than 1 μm). Also provided is a lithium ion battery comprising such an electrode as an anode. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Method of producing graphite-carbon composite electrodes for supercapacitors

A method of producing a composite electrode having a specific surface area of at least 100 m2 / gm for use in an electrochemical capacitor. The method comprises (a) providing exfoliated graphite flakes that are substantially interconnected to form a porous, conductive graphite network comprising pores; and (b) incorporating an electrochemically active material into at least a pore of the graphite network to form the composite electrode. The exfoliated graphite flakes are preferably obtained from the intercalation and exfoliation of a laminar graphite material selected from natural graphite, spheroidal graphite, synthetic graphite, highly oriented pyrolytic graphite, meso-carbon micro-bead, carbon / graphite fiber, carbon / graphite whisker, carbon / graphite nano-fiber, carbon nano-tube, or a combination thereof. A supercapacitor featuring such a composite electrode exhibits an exceptionally high capacitance value and low equivalent series resistance.
Owner:NANOTEK INSTR GRP LLC

Process for producing hybrid nano-filament electrodes for lithium batteries

This invention provides a process for producing a hybrid nano-filament composition for use in a lithium battery electrode. The process comprises: (a) providing a porous aggregate of electrically conductive nano-wires that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a porous network of electrically conductive filaments, wherein the nano-wires have a diameter or thickness less than 500 nm; and (b) depositing an electro-active coating onto a surface of the nano-wires, wherein the electro-active coating is capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm, preferably less than 1 μm. This process is applicable to the production of both an anode and a cathode. The battery featuring an anode or cathode made with this process exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Hybrid nano-filament cathode compositions for lithium metal or lithium ion batteries

This invention provides a hybrid nano-filament composition for use as a cathode active material. The composition comprises (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network, wherein the filaments have a length and a diameter or thickness with the diameter or thickness being less than 500 nm; and (b) micron- or nanometer-scaled coating that is deposited on a surface of the filaments, wherein the coating comprises a cathode active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm, preferably less than 1 μm and more preferably less than 500 nm. Also provided is a lithium metal battery or lithium ion battery that comprises such a cathode. Preferably, the battery includes an anode that is manufactured according to a similar hybrid nano filament approach. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Mixed nano-filament electrode materials for lithium ion batteries

This invention provides a mixed nano-filament composition for use as an electrochemical cell electrode. The composition comprises: (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network, wherein the filaments have a length and a diameter or thickness with the diameter / thickness less than 500 nm (preferably <100 nm) and a length-to-diameter or length-to-thickness aspect ratio greater than 10; and (b) Multiple nanometer-scaled, electro-active filaments comprising an electro-active material capable of absorbing and desorbing lithium ions wherein the electro-active filaments have a diameter or thickness less than 500 nm (preferably <100 nm). The electro-active filaments (e.g., nanowires) and the electrically conductive filaments (e.g., carbon nano fibers) are mixed to form a mat-, web-, or porous paper-like structure in which at least an electro-active filament is in electrical contact with at least an electrically conductive filament. Also provided is a lithium ion battery comprising such an electrode as an anode or cathode, or both. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas

Systems and processes for producing hydrogen using bacteria are described. One detailed process for producing hydrogen uses a system for producing hydrogen as described herein, the system including a reactor. Anodophilic bacteria are disposed within the interior of the reactor and an organic material oxidizable by an oxidizing activity of the anodophilic bacteriais introduced and incubated under oxidizing reactions conditions such that electrons are produced and transferred to the anode. A power source is activated to increase a potential between the anode and the cathode, such that electrons and protons combine to produce hydrogen gas. One system for producing hydrogen includes a reaction chamber having a wall defining an interior of the reactor and an exterior of the reaction chamber. An anode is provided which is at least partially contained within the interior of the reaction chamber and a cathode is also provided which is at least partially contained within the interior of the reaction chamber. The cathode is spaced apart at a distance in the range between 0.1-100 centimeters, inclusive, from the anode. A conductive conduit for electrons is provided which is in electrical communication with the anode and the cathode and a power source for enhancing an electrical potential between the anode and cathode is included which is in electrical communication at least with the cathode. A first channel defining a passage from the exterior of the reaction chamber to the interior of the reaction chamber is also included.
Owner:PENN STATE RES FOUND +1

High performance energy storage devices

A lead-acid battery comprising: at least one lead-based negative electrode; at least one lead dioxide-based positive electrode; at least one capacitor electrode; and electrolyte in contact with the electrodes; wherein a battery part is formed by the lead based negative electrode and the lead dioxide-based positive electrode; and an asymmetric capacitor part is formed by the capacitor electrode and one electrode selected from the lead based negative electrode and the lead-dioxide based positive electrode; and wherein all negative electrodes are connected to a negative busbar, and all positive electrodes are connected to a positive busbar. The capacitor electrode may be a capacitor negative electrode comprising carbon and an additive mixture selected from oxides, hydroxides or sulfates of lead, zinc, cadmium, silver and bismuth, or a capacitor negative electrode comprising carbon, red lead, antimony in oxide, hydroxide or sulfate form, and optionally other additives. The capacitor electrode may be used in asymmetric capacitors and batteries of other types.
Owner:COMMONWEALTH SCI & IND RES ORG

Method of producing hybrid nano-filament electrodes for lithium metal or lithium ion batteries

Disclosed is a method of producing a hybrid nano-filament composition for use in a lithium battery electrode. The method comprises: (a) providing an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a porous network of electrically conductive filaments, wherein the filaments comprise electro-spun nano-fibers that have a diameter less than 500 nm (preferably less than 100 nm); and (b) depositing micron- or nanometer-scaled coating onto a surface of the electro-spun nano-fibers, wherein the coating comprises an electro-active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 μm (preferably less than 1 μm). The same method can be followed to produce an anode or a cathode. The battery featuring an anode or cathode made with this method exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
Owner:GLOBAL GRAPHENE GRP INC

Electrode material, and production method and use thereof

An electrode material comprising a particle containing at least one member selected from the particles containing silicon, tin, silicon compound and tin compound, and fibrous carbon. The particle includes: (1) a particle comprising at least one member of a silicon particle, tin particle, particle containing a lithium-ion-intercalatable / releasable silicon compound and particle containing a lithium-ion-intercalatable / releasable tin compound; or (2) a particle comprising a silicon and / or silicon compound-containing carbonaceous material deposited onto at least a portion of the surfaces of a carbon particle having a graphite structure. The lithium secondary battery using the electrode material as a negative electrode has high discharging capacity and is excellent in cycle characteristics and characteristics under a load of large current.
Owner:SHOWA DENKO KK

Graphite composite lithium ion battery anode material lithium iron phosphate and preparation method thereof

The invention relates to a graphene composite lithium ion battery anode material lithium iron phosphate and a preparation method thereof. The composite material of lithium iron phosphate and graphene is connected by interface of chemical bonding. The invention also provides the method for preparing the graphene composite lithium ion battery anode material lithium iron phosphate in an in-situ symbiosis reaction mode, and the obtained anode material has high tap density and good magnifying performance, and is suitable to be used as a anode material of a lithium ion power battery.
Owner:龚思源

Heating atomization electronic cigarette using capacitances to supply power

InactiveCN101862038AAvoid auto-connect problemsConnectivityTobacco devicesCapacitanceElectricity
The invention provides a heating atomization electronic cigarette using capacitances to supply power, which comprises a power supply part, a cigarette body part and a hollow cigarette holder part, wherein the power supply part comprises an indicator light, a pair of electrode connection-pegs and a lead connection-peg, the indicator light is arranged at the back end of a power supply, and the electrode connection-pegs and the lead connection-peg are arranged at the front end of the power supply; the cigarette body part comprises a pair of electrode plug interfaces, a lead plug interface, a control circuit module, a heating atomization device, a liquid suction head and a nicotine reservoir, the electrode plug interfaces and the lead plug interface are arranged at the back end of a hollow cigarette stem, and the control circuit module, the heating atomization device, the liquid suction head and the nicotine reservoir are sequentially arranged in the hollow cavity of the hollow cigarette stem; a sponge body is arranged in the nicotine reservoir, and a liquid inlet is arranged on the wall of the nicotine reservoir; the two ends of the liquid suction head are respectively contacted and connected with the heating atomization device and the sponge body, and the power supply part and the cigarette body part can be separated or connected by the electrode connection-pegs, the lead connection-peg, the electrode plug interfaces and the lead plug interface in a plug-in way; and the front end of the cigarette body is in plug-in or threaded connection with the back end of the hollow cigarette holder, and the power supply, the indicator light, the control circuit module and the heating atomization device are sequentially and electrically connected.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Anode or cathode pole piece of lithium ion battery and coating method thereof

The present invention relates to a lithium-ion battery anode or cathode pole piece and a spreading method of the anode pole piece or the cathode pole piece, wherein, the anode pole piece and the cathode pole piece consists of a foil, a conducting adhesive thin layer and an electrode active material layer in turn; the thickness of the conducting adhesive thin layer is five to ten microns. The electrode pole piece is made in the procedures that a layer of conducting adhesive thin layer in the thickness of five to ten microns are pre-coated on the surface of the foil before the sizing agent is spread, so that a conducting adhesive thin layer having good adhesive force, good conductivity and compact structure is formed on the surface of the foil. Then the electrode active material sizing agent is spread on the conducting adhesive thin layer, and is dried under an appropriate temperature to produce a required pole piece. The present invention can reduce the surface of the foil, and can improve the wetting quality of the sizing agent, thereby improving the adhesion performance of the anode material and the collecting body (aluminum foil) so as to reduce the powder-dropping of the battery during the cycling process, and to prolong the cycling service life of the battery; moreover, the present invention can reduce the content of the adhesive agent in the sizing agent, and improve the utilization rate of the active substance, and the method of the present invention does not produce negative influence on the performance of the battery.
Owner:CENT SOUTH UNIV

Novel multi-level converter topology with the possibility of dynamically connecting individual modules in series and in parallel

The present invention describes an electrical converter system for power supply systems, comprising at least two identical individual modules connected consecutively, characterised in that each individual module have at least four internal switching elements, at least one energy storage element and at least four connectors, wherein the connectors are paired and serve as a first and a second terminal pair; the internal switching elements of each individual module are designed in such manner that they are able to selectively connect one or both connectors of each terminal pair to the energy storage element; the cascaded connection of at least two individual modules is made in such manner that the connectors in the second terminal pair of a preceding individual module are each connected to the connectors of the first terminal pair in the respective following individual module, and at least one terminal of the first terminal pair of the first individual module of the cascaded connection and at least one terminal of the second terminal pair of the last individual module of the cascaded connection serve as terminals for the cascaded connection; and wherein the switching elements of the respective individual modules in the cascaded connection of at least two individual modules connect their respective energy storage element to the terminals of the cascaded connection in such manner that a selective serial or parallel connection of the energy storage elements is made.
Owner:TECH UNIV MUNCHEN

Electric double layer capacitor

An aqueous electric double layer capacitor having excellent wettability with aqueous electrolytic solution, low internal resistance, excellent easiness of forming uniform, thin and wide films and mechanical strength. Activated carbon powder, a polymeric binder having a hydrophilic group and a plasticizer are fully mixed to form a film which is then dried to form an electrode. By using a polymer having a hydrophilic group as a binder, wettability between an aqueous electrolytic solution and the electrode is improved and contact resistance between an electrolysis solution and the electrode can be reduced. In addition, by adding a plasticizer, the amount of polymer binder required to form a thin type electrode can be reduced, thus providing an aqueous solution electric double layer capacitor with low internal resistance.
Owner:TOKIN CORP

Electric double layer capacitor

The present invention is directed to a novel capacitor. The capacitor may be used in electric double layer capacitors. The capacitors include a polarizable electrode including activated carbon and a non-polarizable electrode including lead dioxide and lead sulfate. The capacitors of the present invention provide considerably higher electric capacity, higher durability, and low resistance, while maintaining high conductivity. Additionally, the electrodes may be produced more quickly and inexpensively.
Owner:WAINWRIGHT D WALKER

Novel carbon-sulfur compound for lithium-sulfur battery

The invention relates to a novel carbon-sulfur compound for an anode material of a lithium-sulfur battery and a preparation method thereof. Sulfur is filled into a nano and micron hole of a matrix in an elementary substance way by taking a macroporous carbon material with high pore volume, electrical conductivity and specific surface area as the matrix, and the sulfur and carbon can also carry out combination reaction so as to prepare the novel carbon-sulfur compound of which the sulfur exists in one or more chemical states in a carbon material. The novel carbon-sulfur compound used as the anode material of the lithium-sulfur battery has the advantages that the high pore volume has large contained sulfur contents and can ensure high electric capacity; the small granularity of the sulfur can reduce a conductive distance between ions and electrons and increase the utilization ratio of the sulfur; and the adsorption characteristics of the high specific surface of the carbon material can inhibit a discharging intermediate product from dissolving and moving towards a cathode, reduce the self discharge, prevent a nonconductive discharging product, namely lithium sulfide from largely accumulating outside carbon particles and reduce internal resistance, therefore, the material can improve the specific energy, the specific power and the cycle performance of the lithium-sulfur battery.
Owner:NO 63971 TROOPS PLA

Hybrid anode compositions for lithium ion batteries

The present invention provides an exfoliated graphite-based hybrid material composition for use as an electrode, particularly as an anode of a lithium ion battery. The composition comprises: (a) micron- or nanometer-scaled particles or coating which are capable of absorbing and desorbing alkali or alkaline metal ions (particularly, lithium ions); and (b) exfoliated graphite flakes that are substantially interconnected to form a porous, conductive graphite network comprising pores, wherein at least one of the particles or coating resides in a pore of the network or attached to a flake of the network and the exfoliated graphite amount is in the range of 5% to 90% by weight and the amount of particles or coating is in the range of 95% to 10% by weight. Also provided is a lithium secondary battery comprising such a negative electrode (anode). The battery exhibits an exceptional specific capacity, excellent reversible capacity, and long cycle life.
Owner:SAMSUNG ELECTRONICS CO LTD

Electric double layer capacitor and process for its production

An electric double layer capacitor includes, contained in a casing, an electrolyte, a positive electrode and a negative electrode each being an electrode containing carbon black, to form an electric double layer at the interface with the electrolyte, and a separator interposed between the positive electrode and the negative electrode. At least one electrode of the positive electrode and the negative electrode has protruded portions or bent portions formed continuously in the height direction against the bottom face of the casing. Further, a space due to the height of the protruded portions or the bent portions is formed between the at least one electrode and the separator.
Owner:MITSUBISHI ELECTRIC CORP +1

Battery

The invention provides a battery, comprising a cover plate, a shell, a battery cell and electrolyte. The battery cell and the electrolyte are sealed in the shell of the battery, and the cover plate is hermetically connected with the shell. The battery cell comprises a positive polar plate, a negative polar plate and a diaphragm arranged between the positive polar plate and the negative polar plate. A positive polar lug is arranged on the positive polar plate, and a negative polar lug is arranged on the negative polar plate. The battery cell is further internally provided with a positive polar current and heat conducting member and a negative polar current and heat conducting member, and the positive polar current and heat conducting member and the negative polar current and heat conducting member are mutually insulated. The positive polar current and heat conducting member and the positive polar lug are conducted; the negative polar current and heat conducting member and the negative polar lug are conducted; the positive polar current and heat conducting member and / or the negative polar current and heat conducting member penetrate(s) through the cover plate to leading out current. According to the invention, the internal heat of the battery cell can be reduced rapidly, substances on the polar plates can be prevented from further thermal reaction, and thus, the safety performance of the battery is increased. Meanwhile, the stability of the internal temperature of the battery cell is guaranteed, the cyclic performance and the like of the battery are improved. In addition, the temperature at all parts in the battery cell can be ensured to be consistent so as to eliminate temperature differences and make the reaction temperature of all parts of the polar plates consistent. Meanwhile, the current and heat conducting members can play roles of backbone and support to support the battery cell, and is beneficial to not only assembly but also winding of the battery cell.
Owner:BYD CO LTD

Multilayer multi-turn structure for high-efficiency wireless communication

The invention provides a multilayer multi-turn structure for high-efficiency wireless communication. The structure for the wireless communication comprises multiple conductor layers, an insulator layer separating each conductor layer from another, and at least one connector for connecting two conductor layers in the conductor layers. When electric signals are induced in a resonator at a predetermined frequency, the resistance is reduced.
Owner:NUCURRENT INC

Basic polymer electrolyte fuel cell

A fuel cell has a unit cell whose output is increased. A unit cell of a fuel cell includes a cathode electrode having a gas diffusion layer and an electrode catalyst layer. The electrode catalyst layer is made of carbon black carrying a Pt—Mn-based alloy such as a Pt—Mn alloy on its particle surface. For operating the fuel cell which includes the cathode electrode, it is preferable to make the pressure of an oxygen-containing gas supplied to the cathode electrode higher than the pressure of an hydrogen-containing gas supplied to an anode electrode to make the pressure at the cathode electrode higher than the pressure at the anode electrode.
Owner:HONDA MOTOR CO LTD

Cylindrical lithium ion battery and manufacturing method therefor

The invention belongs to the technical field of lithium batteries and discloses a steel shell type cylindrical lithium ion battery and a manufacturing method therefor. The technical scheme adopted by the invention is as follow: the cylindrical lithium ion battery comprises a cylindrical steel shell, a positive plate, a negative plate and a diaphragm, wherein two sides of each of the positive plate and the negative plate are coated with active substances with corresponding activities; the positive plate, the negative plate and the diaphragm are arranged at intervals and wound into a battery cell; the battery is characterized in that a negative current collector is further arranged on an outer layer of the positive plate, the negative plate and the diaphragm arranged at intervals and is wound into the battery cell together with the positive plate, the negative plate and the diaphragm; a tube body is arranged in the middle of the steel shell; the upper part of the tube body is sealed; the periphery of the lower part of the tube body is hermetically connected with the bottom surface of the steel shell; a lower opening of the tube body is communicated with the outside; two short edges and a long edge of the negative plate are left as uncoated regions; the positive plate is provided with a tab; the diaphragm is longer than a coated region on the negative plate at the starting end of winding and wider than the coated region on the negative plate; the center of the battery cell is inserted in the tube body; and the tab of the positive electrode is opposite to the uncoated region of the negative plate in direction.
Owner:SHANDONG GOLDENCELL ELECTRONICS TECH

Two-dimensional transition metal carbide (nitride) and nano sulfur particulate composite as well as preparation and application thereof

The invention relates to a two-dimensional transition metal carbide (nitride) and nano sulfur particulate composite as well as preparation and application thereof. The composite is formed by two-dimensional transition metal carbide (nitride) MXene nanosheets and nano sulfur particles, wherein the nano sulfur particles grow on the surface of the two-dimensional transition metal carbide (nitride) MXene nanosheets in an in-situ manner, marked as S@MXene. The stable suspension of a single layer or a few layers of two-dimensional transition metal carbide (nitride) MXene nanosheets is mixed with a sodium thiosulfate or sodium polysulfide solution; with formic acid as a reducing agent, the nano sulfur generated by the reaction uniformly grows on the surface of the two-dimensional MXene nanosheet; and the two-dimensional transition metal carbide (nitride) and nano sulfur particulate composite is obtained through neutralization, washing and centrifugation and serves as the anode of a lithium-sulfur battery. According to the invention, a high-conductivity two-dimensional transition metal carbide (nitride) MXene nanosheet carrier is uniformly compounded with nano sulfur particles, introduction of a binder and a conductive agent is not needed, and the composite has excellent electrochemical performance as the anode of a lithium-sulfur battery; and moreover, the technology is simple and can meet the requirements of large-scale production.
Owner:NANJING TECH UNIV

Battery

A battery including an electrode unit housed in a battery can and which generates electricity which can be taken out of the battery via a pair of negative and positive electrode terminals, wherein a terminal assembly is installed in the battery, a current collector plate is connected to an edge of an electrode of the electrode unit for connecting the electrode unit to the terminal assembly, and one or more than one connecting piece which is protrusively formed on a surface of the current collector plate is welded and secured to a base portion of the terminal assembly.
Owner:SANYO ELECTRIC CO LTD

Single-crystal lithium nickel manganese cobalt positive electrode material, preparation method thereof and lithium ion battery

The invention provides a single-crystal lithium nickel manganese cobalt positive electrode material. The single-crystal lithium nickel manganese cobalt positive electrode material comprises a substrate, wherein the substrate is a compound shown as a formula I of LiNi<x>Co<y>Mn<1-x-y>M<z>O<2>, x is more than or equal to 0.3 but less than or equal to 0.75, y is more than or equal to 0.2 but less than or equal to 0.3, z is more than or equal to 0 but less than or equal to 0.1, and a coating layer is coated on a surface of the substrate and is one or more of Li2ZrO3, Li2SnO3, LiNbO3, Li4Ti5O12 and LiAlO2. Compared with the prior art, a fast ion conductor is coated on the surface, thus, the rate performance of a single-crystal material is improved, the gram capacity of the single-crystal material is improved, the cycle performance of the material is further improved, the internal resistance can also be reduced, the polarization loss is reduced, and the cycle lifetime of a battery is prolonged; and meanwhile, the advantage of large compaction of a single-crystal ternary material is maintained, a particle broken phenomenon caused by rolling particles similar to secondary particles during battery fabrication can be prevented due to relatively high compaction, and the cycle performance is improved.
Owner:NINGBO RONBAY LITHIUM BATTERY MATERIAL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products