Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

97results about How to "Guaranteed specific capacity" patented technology

High-voltage lithium cobalt oxide cathode material for lithium-ion battery and preparation method of high-voltage lithium cobalt oxide cathode material

The invention discloses a high-voltage lithium cobalt oxide cathode material for a lithium-ion battery and a preparation method of the high-voltage lithium cobalt oxide cathode material. The high-voltage lithium cobalt oxide cathode material is prepared from a doped lithium cobalt oxide matrix and a coating on the surface of the doped lithium cobalt oxide matrix, wherein a general formula of the doped lithium cobalt oxide matrix is Li<x>Co<1-y>M<y>O<2-z>N<z>; the general formula of the coating is LiNi<x'>Co<y'>Al<z'>O<2>; and the preparation method comprises the following steps: firstly, obtaining the lithium cobalt oxide matrix Li<x>Co<1-y>M<y>O<2-z>N<z> through once sintering; secondly, preparing a lithium cobalt oxide cathode material precursor coated with Ni<x'>Co<y'>Al<z'>(OH)<2> on the surface by liquid-phase co-precipitation reaction; and finally obtaining the high-voltage lithium cobalt oxide cathode material through twice sintering. The high-voltage lithium cobalt oxide cathode material prepared by the method is good in processability and high in compaction density, has relatively high specific capacity and good cycle performance in a high-voltage state, and can be stably circulated at high voltage of 3.0V to 4.5V.
Owner:HUNAN CHANGYUAN LICO CO LTD +1

Pretreatment method of cobaltosic oxide for preparing high-voltage lithium cobalt oxide, high-voltage lithium cobalt oxides anode material and preparation method of high-voltage lithium cobalt oxide

The invention discloses a pretreatment method of cobaltosic oxide. The method comprises the steps of mixing a titanium-containing organic matter with an organic solvent so as to obtain a mixed liquid; adding cobaltosic oxide powder into the mixed liquid under a stirring condition so as to form a turbid liquid, adding deionized water into the turbid liquid, adequately stirring the turbid liquid and the deionized water until a uniform pulp-shaped fluid material is formed, and drying the uniform pulp-shaped fluid material so as to obtain a cobaltosic oxide compound. The high-voltage lithium cobalt oxide can be obtained by adequately mixing the obtained cobaltosic oxide compound, a lithium source and a dopant to obtain a mixture, and performing solid sintering and covering on the mixture at a high temperature. The tap density of the prepared high-voltage lithium cobalt oxide is more than 3.0g / cm<3>, the compaction density is more than 4.2g / cm<3>, the primary discharge gram capacity in the range of 2.8V to 4.34V can reach more than 164mAh / g, and the circulating capacity retention rate in 300 weeks is more than 89 percent. The prepared high-voltage lithium cobalt oxide has the advantages of good processing performance, high tap density, good circulating performance, high specific capacity and the like.
Owner:CHANGSHA RES INST OF MINING & METALLURGY +1

Lithium-ion battery silicon carbon negative electrode material and preparation method thereof

The invention provides a lithium-ion battery silicon carbon negative electrode material and a preparation method thereof. The preparation method of the lithium-ion battery silicon carbon negative electrode material comprises the following steps: S1, after mixing a silicon source and a solvent, wet grinding is performed under an oxidizing condition to form an oxide layer on the surface of the silicon source, wherein the mass of oxygen element accounts for 9.8% to 14% of the mass of the silicon source, and a slurry is obtained; S2, the slurry obtained in step S1 is compounded with a carbon material and dried to obtain a silicon carbon core material; S3, the silicon carbon core material obtained in step S2 is subjected to a fusion process treatment, and then mixed with a carbon coating material uniformly, and then calcined at a high temperature to be shaped; and S4, the material obtained in step S3 is crushed and sieved to obtain the silicon carbon negative electrode material. According to the invention, controlled oxidation of nano-silicon is realized during the wet grinding process, so that an oxide layer is formed on the surface of the silicon source; and the presence of the oxidelayer avoids side reactions between the silicon source and the electrolyte, and reduces the phenomenon of electrochemical agglomeration during the cyclic process at the same time; therefore, the cyclestability of the silicon carbon negative electrode material is significantly increased.
Owner:SHAANXI COAL & CHEM TECH INST

Preparation method of octahedral porous molybdenum dioxide and application of octahedral porous molybdenum dioxide in lithium-ion battery

The invention discloses a preparation method of octahedral porous molybdenum dioxide and an application of the octahedral porous molybdenum dioxide in a lithium-ion battery. The preparation method comprises the steps of: adding trimesic acid and tetramethyl ammonium hydroxide to a solution containing a copper salt and a phosphomolybdic acid and/or phosphomolybdate for stirring to form an emulsion; transferring the emulsion into a hydrothermal reaction kettle for hydrothermal reaction to obtain a precursor compound; and putting the precursor compound into a protective atmosphere, carrying out thermal treatment at a high temperature and then washing the product to obtain a porous octahedral molybdenum dioxide material which is formed by stacking and assembling ultrafine nanoparticles, is uniform in shape and form and good in stability and has a porous characteristic. The molybdenum dioxide material is applied to the lithium-ion battery as a negative electrode material, so that the rate capability and the cycling stability of the electrode material are improved under the premise of ensuring the specific capacity; the preparation technology of the molybdenum dioxide material is simple; the cost is low; and the molybdenum dioxide material has a relatively good research prospect.
Owner:CENT SOUTH UNIV

High-entropy Prussian blue material and preparation method thereof

The invention discloses a high-entropy Prussian blue material, and the molecular formula of the high-entropy Prussian blue material is NaxMIN[Fe(CN)6]zwH2O, wherein M is n different transition metal elements, n is greater than or equal to 5, yn is greater than or equal to 0.01 and less than or equal to 0.90, y1 + y2 + y3 + y4 + y5+... + yn = 1, w is less than or equal to 4.0, x is greater than or equal to 1.40 and less than or equal to 1.95, and z is greater than or equal to 0.90 and less than or equal to 0.98. The high-entropy Prussian blue material is of a monoclinic phase structure, the microstructure of the high-entropy Prussian blue material is large-size crystal particles, and the crystal particles are uniform in size, single in shape and regular in polyhedral morphology. The invention also provides application of the high-entropy Prussian blue material as a positive electrode material in a sodium-ion battery and a preparation method of the high-entropy Prussian blue material. A coprecipitation method is adopted, and the high-entropy Prussian blue material with high specific capacity, good rate capability and excellent cycle performance is obtained through selection of source materials, technological process design and selection and control of technological parameters in preparation.
Owner:ZHEJIANG UNIV HANGZHOU GLOBAL SCI & TECH INNOVATION CENT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products