Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1880 results about "Carbon coating" patented technology

Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof

The invention relates to a silicon-carbon composite negative electrode material and a preparation method thereof. The silicon-carbon composite negative electrode material successively comprises nano silicon / graphite particles, a first carbon coating layer and an organic cracking carbon layer from inside to outside. The nano silicon / graphite particles are globular or globular-like composite particles formed by employing graphite as an inner core of a volume expansion buffer substrate and coating a nano silicon particle layer; the first carbon coating layer comprises carbon nanotubes and / or amorphous carbon, the carbon nanotubes and / or amorphous carbon are interspersed in a gap network formed by gaps of the nano silicon particles and / or are coated outside the nano silicon particle layer, so that the nano silicon is tightly wrapped between the carbon nanotubes and / or between the carbon nanotubes and the graphite substrate, and besides, the material ion conductivity is effectively enhanced; the organic cracking carbon layer is an outermost coating layer of the silicon-carbon composite negative electrode material. The silicon-carbon composite negative electrode material has excellent cycle performance, excellent multiplying power charging and discharging performance and lower volume expansion effect.
Owner:BTR NEW MATERIAL GRP CO LTD

Lithium ion battery silicon-based composite anode material, preparation method thereof and battery

The invention relates to a lithium ion battery silicon-based composite anode material, a preparation method of the lithium ion battery silicon-based composite anode material, and a battery. The lithium ion battery silicon-based composite anode material adopts an embedded composite core-shell structure, a core has a structure formed by embedding nano silicon particles into a gap of an inner layer of hollowed graphite, and a shell is made from a non-graphite carbon material. According to the silicon-based composite anode material, mechanical grinding, mechanical fusing, isotropic compression processing and carbon coating technologies are combined, so that the nano silicon particles can be successfully embedded into the inner layer of the graphite and the surfaces of graphite particles are uniformly coated; the high-performance silicon-based composite anode material is obtained and is excellent in cycle performance (the 300-times cycle capacity retention ratio is more than 90%) and high in first efficiency (more than 90%); in addition, the silicon-based composite anode material is high in specific energy and compaction density, and can meet the requirements of a high-power density lithium ion battery; the preparation process is simple, the raw material cost is low, and the environment is protected.
Owner:BTR NEW MATERIAL GRP CO LTD

Preparation method of monodisperse lithium iron phosphate nanometer material and lithium-ion secondary battery

The invention relates to a preparation method of a monodisperse lithium iron phosphate nanometer material, which is characterized by comprising the following steps of: dissolving a soluble lithium source compound, a ferrous source compound, a phosphorus source compound, a dopping element compound, a carbon source compound, and the like into water or a mixed solvent of the water and an organic solvent; sequentially adding to the organic solvent for stirring and mixing according to specific material mole ratio and order, and keeping the volume ratio of the organic solvent to the water to be within a certain range; transferring a mixture to a high-pressure reaction still for heating treatment; and processing a product through a plurality of steps of washing, drying, carbon coating, ball-milling, mixing, annealing, and the like to obtain the lithium iron phosphate anode active material which has high multiplying power circulation and property. The invention also discloses a relevant lithium-ion secondary battery. By adopting a hydrothermal/solvothermal method and using soluble materials as reactants, the invention enables ions to be uniformly mixed in the synthesizing process, thereby obtaining better crystal forms and very pure phases and further enhancing the property of batteries.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

SiOx based composite negative electrode material, preparation method and battery

The invention relates to a high-capacity SiOx based composite negative electrode material, a preparation method and a battery, wherein the negative electrode material comprises a silicon oxide material, a carbon material and an amorphous carbon coating layer; the silicon oxide material is silicon oxide or silicon oxide material modified in a carbon coating manner; surfaces of carbon material particles are coated with the silicon oxide material. A preparation method of the high-capacity SiOx based composite negative electrode material comprises the steps of performing physical processing or carbon coating modification on a silicon oxide raw material, thus obtaining a micron-sized silicon oxide material; and then mechanically fusing, coating with a solid phase and sintering at a high temperature to obtain the high-capacity negative electrode material. Through the high-capacity SiOx based composite negative electrode material, the effect of uniform dispersing and coating of the micron-sized silicon oxide particles on the surfaces of the carbon material particles can be achieved by virtue of the combination of mechanical fusion and solid-phase coating processes. The silicon oxide particles are well dispersed on the surface of the carbon material particle; the strength of bonding between the silicon oxide particles and the carbon material particles is high; the recycling performance of the material can be greatly improved; and meanwhile, the high-capacity SiOx based composite negative electrode material is high in first efficiency (breaking through the theoretical efficiency of SiOx), low in expansion rate, long in service life, environmental-friendly, pollution-free and low in cost.
Owner:BTR NEW MATERIAL GRP CO LTD

Laser preparation method for large-area patterned graphene

The invention discloses a laser preparation method for large-area patterned graphene. The preparation method comprises the following steps: (1) a solid carbon source is dispersed in an organic solvent to obtain a dispersion liquid, and the surface of a metal substrate is coated with the dispersion liquid in a spinning manner to obtain a uniform carbon coating; (2) under the condition of the protection of inert gas, a high power density laser beam is adopted to irradiate the carbon coating, and carbon atoms in the solid carbon source and metal atoms in the metal substrate are formed into a solid solution under function of irradiation; the high power density laser beam is moved away or the irradiation operation is stopped, when the metal substrate is cooled, the oversaturated solid solution is formed, and the carbon atoms are separated out of the oversaturated solid solution and formed on the surface of the substrate to form graphene. The invention provides a novel method which is convenient, fast, low in cost and high in efficiency and prepares the large-area patterned graphene. The product obtained through the method can be applied to the following fields: next generation microcomputers, flat-panel displays, super-capacitors, transparent conductive electrodes, sensors, solar batteries, micro-nano electronic devices, photoelectronic devices, self-spinning quantum devices, novel compound materials and so on.
Owner:TSINGHUA UNIV

Sodium-titanium phosphate/carbon composite material and preparation method and use thereof

The invention belongs to the field of electrode material synthesis, and relates to a sodium-titanium phosphate/carbon composite material and a preparation method and use thereof. The sodium-titanium phosphate/carbon composite material comprises secondary particles formed by clustering primary particles, the primary particles comprise sodium-titanium phosphate particles and carbon layers coated on the surfaces of the sodium-titanium phosphate particles, and the carbon layers are prepared through two times of carbon coating. According to the sodium-titanium phosphate/carbon composite material and the preparation method and use thereof, by means of preparing a precursor of the sodium-titanium phosphate and then adopting a spray drying method to carry out primary carbon coating and secondary carbon coating, the sodium-titanium phosphate/carbon composite material having a uniform and compact coating carbon layer is prepared, and the problem that the coating carbon layer obtained by the primary carbon coating is not uniform is solved. The composite material is good in stability, electrodes prepared from the sodium-titanium phosphate/carbon composite material and assembled batteries have excellent electrochemical properties, the discharge capacity is above 115mAh/g, and the capacity retention ratio is above 95% after 500 weeks of circulation.
Owner:SHENZHEN CITY BATTERY NANOMETER TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products