Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

7960 results about "Internal resistance" patented technology

A practical electrical power source which is a linear electric circuit may, according to Thévenin's theorem, be represented as an ideal voltage source in series with an impedance. This impedance is termed the internal resistance of the source. When the power source delivers current, the measured voltage output is lower than the no-load voltage; the difference is the voltage drop (the product of current and resistance) caused by the internal resistance. The concept of internal resistance applies to all kinds of electrical sources and is useful for analyzing many types of electrical circuits.

Method for detecting electrical property consistency of lithium ion battery

ActiveCN101907688AElectrical performance consistency solutionEasy to useElectrical testingElectricityInternal resistance
The invention discloses a method for detecting the electrical property consistency of lithium ion battery. The method comprises the following steps of: performing formation storage and ageing storage on a plurality of monomer batteries for a long time one by one and selecting the battery with large self discharge; performing capacity grading treatment on the rest of qualified monomer batteries to obtain the actual battery volume C of the plurality of monomer batteries, charging the plurality of monomer batteries to the same charging state and classifying the plurality of batteries according to the volume difference standard; performing low-temperature direct-current internal resistance test on the plurality of batteries with the same volume difference standard grade and reclassifying the battery according to the direct-current internal resistance of the battery; and selecting and matching the plurality of batteries in the same direct-current internal resistance grade to form the battery pack. The invention can detect the electrical property consistency of the lithium ion battery under the low-temperature condition, effectively solve the problem that the battery has good electrical property consistency under the normal-temperature condition and differed electrical property consistency under the low-temperature condition and is suitable for detecting a batch of batteries and selecting qualified monomer batteries to form a battery pack.
Owner:TIANJIN LISHEN BATTERY +1

Method for estimating battery health of electric automobile

InactiveCN102445663AWork reliablyEstimate the available remaining capacity of the battery fastElectrical testingElectricityAutomotive battery
The invention discloses a method for estimating battery health of an electric automobile, which relates to methods for estimating battery health according to voltage characteristics of a battery charging end. The method solves the defect that battery parameters, such as impedance, internal resistance and the like, need to be calculated while estimating battery health in the prior art. The method is used for estimating battery health. The method comprises the following steps of: emptying a new battery to be detected, and fully charging the new battery to be detected, and in the fully charging process, recording a voltage-time curve and a charge capacity-time curve of charging of the new battery to be detected; calculating actually usable capacity Qnew of the new battery to be detected; setting a threshold of V / dQ; calculating the charged capacity of the new battery to be detected from the time when the threshold of dV / dQ is realized to the time when the battery is fully charged during the charging process; building a relation curve of the open-circuit voltage and SOC (State Of Charge) of the new battery to be detected; estimating a SOCocv, then, calculating theoretically usable capacity Qtest-full of the attenuated battery; and obtaining the health of the battery to be detected according to the attenuated theoretically usable capacity QoId and the actually usable capacity Qnew of the battery.
Owner:HARBIN INST OF TECH

Combined estimation method for lithium ion battery state of charge, state of health and state of function

The invention provides a combined estimation method for lithium ion battery state of charge, state of health and state of function. The combined estimation method comprises the steps that the state of he---alth of a battery is estimated online: open circuit voltage and internal resistance are identified online by adopting a recursive least square method with a forgetting factor, the state of charge is indirectly acquired according to a pre-established OCV-SOC corresponding relation, and then the size of battery capacity is estimated according to cumulative charge and discharge electric charge between two SOC points; the state of charge of the battery is estimated online: the state of charge of the battery is estimated by adopting the Kalman filter algorithm based on a two-order RC equivalent circuit model, and the battery capacity parameter in the Kalman filter algorithm is updated according to the estimation result of battery capacity; and the state of function of the battery is estimated online: the maximum chargeable and dischargeable current is calculated based on the voltage limit and the current limit of the battery according to internal resistance obtained by online identification, and then the maximum chargeable and dischargeable function can be obtained through further calculation.
Owner:TSINGHUA UNIV

SOC (State of Charge) and SOH (State of Health) prediction method of electric vehicle-mounted lithium iron phosphate battery

The invention discloses an SOC (State of Charge) and SOH (State of Health) prediction method of an electric vehicle-mounted lithium iron phosphate battery, which comprises the following steps of: (a) improving a Thevenin cell equivalent model; (b) determining the state equation and the output equation of a system; (c) identifying battery model parameters; (d) using a Kalman filter algorithm to iterate the state variables of the system, so that the predictive value of SOC is closer to the actual value; and (e) using a dual-channel Kalman filter algorithm to carry out the online predication of an internal resistance and capacity of the lithium iron phosphate battery, and simultaneously predicating the SOH of the battery according to the changes in the internal resistance and the capacity value of the battery in the current state and the initial state. With the method, the predication precision of SOH of the battery is effectively improved, the decline in battery performance can be determined more accurately, and the internal resistance and capacity information of the battery is combined to provide a basis for making the battery management strategy and maintaining and replacing the battery.
Owner:SOUTHWEST JIAOTONG UNIV +1

Electrical storage device and manufacturing electrical storage device

An electrical storage device of the present invention is characterized in that a positive electrode, a negative electrode, a lithium electrode, and an electrolyte capable of transferring lithium ion is included, the lithium electrode is arranged to be out of direct contact with the negative electrode, and lithium ion can be supplied to the negative electrode by flowing a current between the lithium electrode and the negative electrode through an external circuit. With the above characteristic, problems such as non-uniform carrying of lithium ion to the negative electrode, shape-change of a cell, and temperature increase of an electrolytic solution under incomplete sealing of a cell and the like can be easily solved. A using method of the electrical storage device is characterized in that, by using the lithium electrode as a reference electrode, the positive electrode potential and negative electrode potential can be measured, and the potential of the positive or negative electrode can be controlled when the electrical storage device is charged or discharged. Therefore, the potentials of the positive electrode and negative electrode can be monitored, thereby it can be easily determined whether deterioration of the electrical storage device is caused by the positive electrode or the negative electrode. Also, it is possible to control the device with the potential difference between the negative electrode and reference electrode, that is, the negative potential. In addition, when characteristics deteriorate such as the internal resistance increase, an appropriate amount of lithium ion can be supplied to the negative electrode and/or positive electrode by the lithium electrode.
Owner:FUJI JUKOGYO KK

Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system

A method for determining deterioration of accumulator battery hooked up with loads in a system based on results of measuring internal resistances of an accumulator battery, the method comprising the steps of; predetermining as a specified temperature a temperature at which the deterioration of the accumulator battery is determined; calculating in advance temperature correction coefficients of the internal resistances from changes of the internal resistances depending on temperatures; predetermining resistance-voltage conversion factors to convert between the internal resistances at the specified temperature and terminal discharge voltages of the accumulator battery which are obtained at the specified temperature under a condition of flowing predetermined discharge currents from the accumulator battery; measuring the internal resistances of the accumulator battery and temperature of the accumulator battery at an internal resistance measurement; converting the measured internal resistance values into the internal resistance values at the specified temperature with use of the temperature correction coefficients of the internal resistances; converting the internal resistance values at the specified temperature into the terminal discharge voltage values of the accumulator battery at the specified temperature with use of the resistance-voltage conversion factors; and determining whether the accumulator battery is deteriorated or not by means of comparison of the terminal discharge voltage values of the accumulator battery at the specified temperature and a predetermined threshold value as a deterioration judgment standard.
Owner:FURUKAWA ELECTRIC CO LTD

Multi-element composite nano-material, preparation method thereof and application thereof

The invention provides a multi-element composite nano-material for a super capacitor, and a preparation method of the nano-material. The nano-material comprises a carbon material, metal oxide and conducting polymer, and components of the nano-material can be two or more than two materials. By the aid of the characteristics such as fine electrical conductivity, long cycle life and high specific surface area of the carbon material, high pseudo-capacitance of the metal oxide and low internal resistance, low cost and high operating voltage of the conducting polymer, different types of electrode materials generate synergistic effects, advantages are mutually combined, shortcomings are mutually weakened, the energy storage characteristics of an electric double-layer capacitor and a pseudo-capacitor are simultaneously made full use of, a composite electrode material with high power density, fine circulating stability and higher energy density is prepared, and the multi-element composite nano-material is excellent in comprehensive performance when used for an electrode of the super capacitor, has the advantages of simple preparation process, short cycle, low cost and the like, and is suitable for large-scale industrial production.
Owner:中科(马鞍山)新材料科创园有限公司

Lithium ion battery internal temperature monitoring method

The invention discloses a lithium ion battery internal temperature monitoring method. The monitoring method includes the following steps that a charge-discharge tester is used for carrying out charge-discharge tests on a lithium ion battery on different environment conditions to obtain a battery surface temperature change curve; related parameters such as battery internal resistance and an open-circuit voltage temperature coefficient are tested, and a lithium ion battery electric heating coupling model based on a variable heat production rate is set up; the temperature rise change of the discharge process of the battery is simulated to obtain a temperature change simulation curve; the experiment test temperature change curve and the simulation curve are analyzed and compared to optimize and verify the electric heating coupling model; the influence between the battery internal temperature and the battery surface temperature as well as the influence between the discharge currents and the discharge depth are analyzed, and a lithium ion battery internal temperature model is constructed; the battery internal temperature is monitored in real time according to the model. The lithium ion battery internal temperature monitoring method is simple and easy to implement, small in estimation error and capable of well meeting the requirement for monitoring the battery internal temperature in real time.
Owner:ZHEJIANG COLLEGE OF ZHEJIANG UNIV OF TECHOLOGY

Novel carbon-sulfur compound for lithium-sulfur battery

The invention relates to a novel carbon-sulfur compound for an anode material of a lithium-sulfur battery and a preparation method thereof. Sulfur is filled into a nano and micron hole of a matrix in an elementary substance way by taking a macroporous carbon material with high pore volume, electrical conductivity and specific surface area as the matrix, and the sulfur and carbon can also carry out combination reaction so as to prepare the novel carbon-sulfur compound of which the sulfur exists in one or more chemical states in a carbon material. The novel carbon-sulfur compound used as the anode material of the lithium-sulfur battery has the advantages that the high pore volume has large contained sulfur contents and can ensure high electric capacity; the small granularity of the sulfur can reduce a conductive distance between ions and electrons and increase the utilization ratio of the sulfur; and the adsorption characteristics of the high specific surface of the carbon material can inhibit a discharging intermediate product from dissolving and moving towards a cathode, reduce the self discharge, prevent a nonconductive discharging product, namely lithium sulfide from largely accumulating outside carbon particles and reduce internal resistance, therefore, the material can improve the specific energy, the specific power and the cycle performance of the lithium-sulfur battery.
Owner:NO 63971 TROOPS PLA

Measurement of intracardiac impedance in a multisite-type, active implantable medical device, in particular a pacemaker, defibrillator and/or cardiovertor

InactiveUS6539261B2Minimizes additional circuitry requiredSimple and advantageous to realizeHeart stimulatorsDiagnostic recording/measuringPotential measurementElectricity
An active implantable medical device, in particular a pacemaker, defibrillator or cardioveter of the multisite type, including a circuit for measuring intercardiac impedance. Electrodes are placed in at least one ventricular site and one atrial site, and are connected to a circuit for the collection of cardiac signals, to detect a depolarization potential, as well as to a stimulation circuit, to apply stimulation pluses to at least some of the aforementioned sites. The measurement of a trans-pulmonary bio-impedance is obtained by injecting a current from an injection circuit (16) between the case (18) of the device and a first atrial (RA-) (or ventricular) site, and measuring a differential potential (20) between the case (18) and a point of measurement located in a second atrial (RA+) (or ventricular) site using a collection circuit. Switches are selectively operable to isolate the case (18) from the current injection and measurement of potential circuits, and to connect them to a common reference potential site, atrial or ventricular (LV-), which is distinct from the sites (RA-,RA+) to which are also connected these circuits, so as to allow a measurement of intracardiac impedance from the signal delivered by the differential potential measuring circuit. The switching is obtained by connections to an electric ground, operating independently of the current injection circuit and the differential potential measuring circuit.
Owner:SORIN CRM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products