Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5207 results about "State of charge" patented technology

State of charge (SoC) is the level of charge of an electric battery relative to its capacity. The units of SoC are percentage points (0% = empty; 100% = full). An alternate form of the same measure is the depth of discharge (DoD), the inverse of SoC (100% = empty; 0% = full). SoC is normally used when discussing the current state of a battery in use, while DoD is most often seen when discussing the lifetime of the battery after repeated use.

Vehicle sharing system and method for allocating vehicles based on state of charge

A shared vehicle system includes a central facility, at least one vehicle distribution port facility and a plurality or fleet of vehicles, each having a vehicle subsystem. In general, the central station and port facility and the vehicle subsystems communicate in a manner to allow a user to enter information at a port facility. That information is then communicated to the central facility, where the information is processed to select a vehicle from the fleet to allocate to the user at the port facility. Selection of a vehicle for allocation to a user may be based on selecting an available or soon to be available vehicle according to various algorithms that take into account the vehicles state of charge. The central station also communicates with the port facility and the vehicle subsystem to notify the user of the selected vehicle, to provide secure user access to the selected vehicle, to monitor the location and operating status of vehicles in the fleet, to monitor the state of charge of electric vehicles and to provide other functions. The vehicles communicate with the central station to notify the central station of the PIN number of the individual attempting to use the vehicle, and of vehicle parameters such as state of charge and location of the vehicle.
Owner:RGT UNIV OF CALIFORNIA +1

Method for estimating battery health of electric automobile

InactiveCN102445663AWork reliablyEstimate the available remaining capacity of the battery fastElectrical testingElectricityAutomotive battery
The invention discloses a method for estimating battery health of an electric automobile, which relates to methods for estimating battery health according to voltage characteristics of a battery charging end. The method solves the defect that battery parameters, such as impedance, internal resistance and the like, need to be calculated while estimating battery health in the prior art. The method is used for estimating battery health. The method comprises the following steps of: emptying a new battery to be detected, and fully charging the new battery to be detected, and in the fully charging process, recording a voltage-time curve and a charge capacity-time curve of charging of the new battery to be detected; calculating actually usable capacity Qnew of the new battery to be detected; setting a threshold of V / dQ; calculating the charged capacity of the new battery to be detected from the time when the threshold of dV / dQ is realized to the time when the battery is fully charged during the charging process; building a relation curve of the open-circuit voltage and SOC (State Of Charge) of the new battery to be detected; estimating a SOCocv, then, calculating theoretically usable capacity Qtest-full of the attenuated battery; and obtaining the health of the battery to be detected according to the attenuated theoretically usable capacity QoId and the actually usable capacity Qnew of the battery.
Owner:HARBIN INST OF TECH

Combined estimation method for lithium ion battery state of charge, state of health and state of function

The invention provides a combined estimation method for lithium ion battery state of charge, state of health and state of function. The combined estimation method comprises the steps that the state of he---alth of a battery is estimated online: open circuit voltage and internal resistance are identified online by adopting a recursive least square method with a forgetting factor, the state of charge is indirectly acquired according to a pre-established OCV-SOC corresponding relation, and then the size of battery capacity is estimated according to cumulative charge and discharge electric charge between two SOC points; the state of charge of the battery is estimated online: the state of charge of the battery is estimated by adopting the Kalman filter algorithm based on a two-order RC equivalent circuit model, and the battery capacity parameter in the Kalman filter algorithm is updated according to the estimation result of battery capacity; and the state of function of the battery is estimated online: the maximum chargeable and dischargeable current is calculated based on the voltage limit and the current limit of the battery according to internal resistance obtained by online identification, and then the maximum chargeable and dischargeable function can be obtained through further calculation.
Owner:TSINGHUA UNIV

SOC (State of Charge) and SOH (State of Health) prediction method of electric vehicle-mounted lithium iron phosphate battery

The invention discloses an SOC (State of Charge) and SOH (State of Health) prediction method of an electric vehicle-mounted lithium iron phosphate battery, which comprises the following steps of: (a) improving a Thevenin cell equivalent model; (b) determining the state equation and the output equation of a system; (c) identifying battery model parameters; (d) using a Kalman filter algorithm to iterate the state variables of the system, so that the predictive value of SOC is closer to the actual value; and (e) using a dual-channel Kalman filter algorithm to carry out the online predication of an internal resistance and capacity of the lithium iron phosphate battery, and simultaneously predicating the SOH of the battery according to the changes in the internal resistance and the capacity value of the battery in the current state and the initial state. With the method, the predication precision of SOH of the battery is effectively improved, the decline in battery performance can be determined more accurately, and the internal resistance and capacity information of the battery is combined to provide a basis for making the battery management strategy and maintaining and replacing the battery.
Owner:SOUTHWEST JIAOTONG UNIV +1

Vehicle sharing system and method with parking state detection

A shared vehicle system includes a central facility, at least one vehicle distribution port facility and a plurality or fleet of vehicles, each having a vehicle subsystem. In general, the central station and port facility and the vehicle subsystems communicate in a manner to allow a user to enter information at a port facility. That information is then communicated to the central facility, where the information is processed to select a vehicle from the fleet to allocate to the user at the port facility. Selection of a vehicle for allocation to a user may be based on selecting an available or soon to be available vehicle according to various algorithms that take into account the vehicles state of charge. The central station also communicates with the port facility and the vehicle subsystem to notify the user of the selected vehicle, to provide secure user access to the selected vehicle, to monitor the location and operating status of vehicles in the fleet, to monitor the state of charge of electric vehicles and to provide other functions. The vehicles communicate with the central station to notify the central station of the PIN number of the individual attempting to use the vehicle, and of vehicle parameters such as state of charge and location of the vehicle.
Owner:RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products