Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

30942 results about "Charge and discharge" patented technology

Battery pack having memory

In an exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor and battery conditioning system memory are permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters. In the case of a nonportable conditioning system, two-way communication may be established with a memory associated with the portable unit so that the portable unit can transmit to the conditioning system information concerning battery parameters (e.g. rated battery capacity) and/or battery usage (e.g. numbers of shallow discharge and recharge cycles), and after a conditioning operation, the conditioning system can transmit to the portable unit a measured value of battery capacity, for example. A battery pack having memory stores battery history and identifying data to be retrieved by a portable battery powered device. Battery status information may be utilized in conjunction with characteristic battery history data in order to optimize charging and discharging functions and to maximize the useful life of a battery pack.
Owner:INTERMEC

Carbon/silicon/carbon nano composite structure cathode material and preparation method thereof

InactiveCN102214817AControllable GeometrySimple processCell electrodesCarbon compositesGas phase
The invention discloses a carbon/silicon/carbon nano composite structure cathode material and a preparation method thereof, belonging to the technical field of electrochemical power supply technologies. The cathode material consists of a carbon-based conductive substrate, nano silicon and a nano carbon coating layer, wherein the nano silicon is uniformly distributed on the carbon-based conductive substrate; the nano carbon coating layer is arranged on the surface of the nano silicon; the carbon-based conductive substrate is porous carbon, a carbon nanotube or graphene; the nano silicon exists in the state of nanoparticles or nano films; the weight percentage of the nano silicon in the cathode material is 10-90 percent; and the thickness of the nano carbon coating layer is 0.1-10 nanometers. The preparation method comprises the following steps of: depositing nano silicon on the carbon substrate in a reaction space in oxygen-free atmosphere by adopting a chemical vapor deposition process; and coating nano carbon on the surface of the nano silicon by adopting the chemical vapor deposition process. In the obtained carbon/silicon/carbon composite cathode material, the volume change of a silicon electrode material is controlled effectively in the charging and discharging processes, the electrode structure is kept complete, the circulation volume is large, the circulation service life is long, and the electrochemical performance is high.
Owner:TSINGHUA UNIV

Cathode for lithium battery

The present invention relates to cathodes used in electrochemical cells. A force, or forces, applied to portions of an electrochemical cell as described in this application can reduce irregularity or roughening of an electrode surface of the cell, improving performance. The cathodes described herein may possess enhanced properties that render them particularly suitable for use in electrochemical cells designed to be charged and / or discharged while a force is applied. In some embodiments, the cathode retains sufficient porosity to charge and discharge effectively when a force is applied to the cell. Cathodes described herein may also comprise relatively high electrolyte-accessible conductive material (e.g., carbon) areas. The cathode may comprise a relatively low ratio of the amount of binder and / or mass of electrolyte to cathode active material (e.g., sulfur) ratio in some instances. In some embodiments, electrochemical cells comprising the cathodes described herein may achieve relatively high specific capacities and / or relatively high discharge current densities. In addition, the cathode described herein may exhibit relatively high cathode active material (e.g., sulfur) utilization during charge and discharge. In still further cases, the electrical conductivity between conductive material in the cathode (e.g., carbon) may be enhanced during the application of the force.
Owner:SION POWER CORP

Adjustable electrode and related method

The present invention relates to a electrode assembly and related method that includes a insulator assembly, an electrode assembly, a charging system, a mechanism for measuring electrical voltages, a mechanism for adjusting the distance between inner and outer electrode tips, and a controller. The insulator assembly includes an insulator body having a hollow central portion with a threaded inner wall. The insulator assembly includes inner and outer conductors that are electrically connected to the charging system and are physically connected to inner and outer electrodes, respectively. The electrodes are positioned such that their longitudinal axes are aligned and the tips of the electrodes are in relatively close physical proximity. The distance between the tips is defined as the spark gap. The charging system charges a capacitor that discharges and forms a spark across the spark gap. The electrical measuring mechanism measures the discharge voltage of the capacitor and the controller compares it to a reference voltage, issuing a correction signal to the adjusting mechanism that repositions the electrodes, thus optimizing the spark gap. An alternate embodiment analyzes the charge and discharge characteristics of an electrode assembly that utilizes a second capacitor and an inductor to adjust the spark gap.
Owner:MTS MEDICAL TECH & SERVICES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products