Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

106results about How to "Show unity" patented technology

Display and driving method thereof

A display in accordance with the present invention includes: photoelectric elements as pixels; scan signal lines for sequentially driving the photoelectric elements; video data signal lines for supplying video data signals to the photoelectric elements; and drive-switching elements, each provided for a different photoelectric element, for supplying, to the photoelectric elements, currents matching with the video data signals supplied from the video data signal lines, and further includes path selector switching elements, connected to the respective drive-switching elements, for selecting one of current injecting paths according to a scan signal from the scan signal lines, and a current measuring circuit to either one of the current injecting paths.
Owner:SHARP KK

Liquid crystal display device

Provided is a liquid crystal display device including: a plurality of column spacers and a first alignment film which are formed above the first substrate; an insulating layer which is formed on the second substrate and a second alignment film which is formed on the insulating layer; and column spacer receiving members which are provided between the insulating layer and the second alignment film in places opposed to the plurality of column spacers, the column spacer receiving members each being made of a material different from both of a material of the insulating layer and a material of the second alignment film, in which a thickness of the second alignment film in places above the column spacer receiving members is ⅓ or less of a thickness of the second alignment film in places in which the second alignment film is formed directly on the insulating layer.
Owner:PANASONIC LIQUID CRYSTAL DISPLAY CO LTD +1

Surface light source and electrically illuminated signboard

LEDs (7) are arranged on at least opposite two corners of a bottom surface of a box body (11) of a tray shape whose bottom surface is quadrilateral, whose upper side is open, on an inner surface of which a light reflection member (11b) is provided, and whose side walls (11c) are inclined outward, so as to irradiate inside of the box body, wherein a plurality of LEDs (71) are arranged so that a region irradiated by each of the LEDs (71) rotates sequentially in a specific direction (same direction). As a result, there can be obtained a surface light source having high brightness and uniformity in an arbitrary size whether the light source is small or large while using semiconductor light emitting devices (LEDs), and an electrically illuminated signboard using the surface light source, which is thin and capable of uniform display and which operates with low electricity consumption.
Owner:ZYCC +1

EL display device providing means for delivery of blanking signals to pixel elements

An EL display device 1 includes a display portion 2 having unit pixels 10 arranged in a matrix, a source line driver circuit 6, and a gate line driver circuit 4. Each of the unit pixels 10 has an EL element 11, a switching transistor Tr1, a driver transistor Tr2, and an auxiliary capacitor 13. The auxiliary capacitor 13 has electrodes, one connected to a gate electrode of the transistor Tr2 and the other to a next gate line GL. The gate line driver circuit 4 outputs, via the next gate line GL, blanking signals for forcibly stopping a light-emitting state of the EL elements 11, within hold times in which the voltages written to the gate electrodes of the transistors Tr2 are held. With such a configuration, a blanking period where the EL elements do not emit light, is inserted in one frame.
Owner:JOLED INC

Beam irradiation apparatus, beam irradiation method, and method for manufacturing semiconductor device

The speed of the laser scanned by the scanning means such as a galvanometer mirror or a polygon mirror is not constant in the center portion and in the end portion of the scanning width. As a result, the object, for example an amorphous semiconductor film, is irradiated with the excessive energy and therefore there is a risk that the amorphous semiconductor film is peeled. In the present invention, in the case where the laser spot of the energy beam output continuously on the irradiated object is scanned by moving it back and forth with the use of the scanning means or the like, the beam is irradiated to the outside of the element-forming region when the scanning speed of the spot is not the predetermined value, for example when the speed is not constant, and accelerates, decelerates, or is zero, for example in the positions where the scanning direction changes, or where the scanning starts or ends.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

A liquid crystal display device of an in-plane switching mode comprises at least optically anisotopic members (A) and (B) and liquid crystal cell disposed between a pair of polarizers having absorrption axes disposed approximately perpendicularly to each other, wherein nzA>nyA and nxB>nzB (nxA, nxB: refractive indices (n) in the direction of the in-plane slow axis; nyA, nyB: n in the in-plane direction perpendicular to the above direction; nzA, nzB: n in the direction of thickness, each at 550 nm); the in-plane slow axes of (A) and (B) are approximately parallel or perpendicular to each other; and the in-plane slow axis of (A) is approximately parallel or perpendicular to the absorption axis of a polarizer closer to (A). The antireflection property, scratch resistance and durability are exellent, the angle of field is wide, and uniform display of images with great contrast can be achieved at any angle of observation.
Owner:ZEON CORP

Liquid crystal display device having particular alignment controlling elements in transmissive and reflective pixel regions

To provide a transreflective liquid crystal display device that can produce a bright and high-contrast display with a wide viewing angle. A liquid crystal display device has a liquid crystal layer held between a pair of substrates and has a transmissive display region and a reflective display region in one dot region. The liquid crystal layer includes a liquid crystal being initially vertically aligned and having negative dielectric anisotropy. The pair of substrates have electrodes to drive the liquid crystal on sides facing the liquid crystal layer. The electrodes have openings and protrusions in the transmissive display region and the reflective display region, respectively. The opening areas of the openings and the in-plane occupying areas of the protrusions are larger in the reflective display region than in the transmissive display region.
Owner:BOE TECH GRP CO LTD

Thermoplastic film and method of producing the same

A method of producing a thermoplastic film, which can increase uniformity of Re and Rth of a thermoplastic film obtained by stretching, and which can provide a thermoplastic film having few display irregularities when the film is incorporated into a liquid crystal display device as a retardation film, and a thermoplastic film produced by the method are provided. In a tenter, both ends in the width direction of the film are held with clips and the film is simultaneously stretched in the traveling direction A and the width direction B. By this, a thermoplastic film in which the number of adhesion marks is 10 marks / m2 or less, the in-plane retardation Re is 0 nm to 500 nm and the retardation Rth in the thickness direction is 30 nm to 500 nm is produced.
Owner:FUJIFILM CORP

Polarizing plate, manufacturing method thereof, optical film and image display

A polarizing plate of the present invention includes a polyvinyl alcohol-based polarizer and transparent protective films provided on both sides of the polarizer with an adhesive layer interposed between the polarizer and each transparent protective film, wherein the transparent protective film on one side comprises a lactone ring structure-containing (meth)acrylic resin and is a retardation plate having an in-plane retardation of 40 nm or more and / or a thickness direction retardation of 80 nm or more, and the transparent protective film on the other side has an in-plane retardation of less than 40 nm and a thickness direction retardation of less than 80 nm. The polarizing plate can satisfy durability and display uniformity (unevenness).
Owner:NITTO DENKO CORP +1

Method and device to improve backlight uniformity

A hot spot filter for a light guide is created by taking an image of the light output pattern of an illuminated light guide. The hot spot filter may be a film, a layer, or an additional liquid crystal display dedicated to attenuating bright spots from the light guide. The hot spot filter may be incorporated into the image display by adjusting the grey scale of individual pixels to provide sufficient compensation.
Owner:BLACKBERRY LTD

Transmissive display apparatus, mobile object and control apparatus

InactiveUS20120242724A1Diffraction efficiency be increaseUniform displayInstrument arrangements/adaptationsCathode-ray tube indicatorsMobile objectTransmittance
A transmissive display apparatus includes a transparent display panel, a display unit which projects a display light toward a display area of the transparent display panel, a ratio change unit which is provided to the display area, is configured to be capable of changing a light transmittance, and is configured to be capable of changing a ratio of a light quantity of a rear face reflected light reaching a viewpoint relative to a light quantity of a front face reflected light reaching the viewpoint, and a control unit which alternately switches the ratio change unit between a first state and a second state. The ratio change unit lowers, in the first state, the ratio by reducing the light quantity of the rear face reflected light that reaches the viewpoint in comparison to the second state. The light transmittance increases in the second state in comparison to the first state.
Owner:PANASONIC CORP

Method for manufacturing a semiconductor device where the scanning direction changes between regions during crystallization and process

The speed of the laser scanned by the scanning means such as a galvanometer mirror or a polygon mirror is not constant in the center portion and in the end portion of the scanning width. As a result, the object, for example an amorphous semiconductor film, is irradiated with the excessive energy and therefore there is a risk that the amorphous semiconductor film is peeled. In the present invention, in the case where the laser spot of the energy beam output continuously on the irradiated object is scanned by moving it back and forth with the use of the scanning means or the like, the beam is irradiated to the outside of the element-forming region when the scanning speed of the spot is not the predetermined value, for example when the speed is not constant, and accelerates, decelerates, or is zero, for example in the positions where the scanning direction changes, or where the scanning starts or ends.
Owner:SEMICON ENERGY LAB CO LTD

Method and device to improve backlight uniformity

A hot spot filter for a light guide is created by taking an image of the light output pattern of an illuminated light guide. The hot spot filter may be a film, a layer, or an additional liquid crystal display dedicated to attenuating bright spots from the light guide. The hot spot filter may be incorporated into the image display by adjusting the grey scale of individual pixels to provide sufficient compensation.
Owner:MALIKIE INNOVATIONS LTD

Liquid crystal display

A liquid crystal display includes a first substrate having a first electrode on one surface side, a second substrate having second electrode on one surface side and placed opposite to the first substrate. A liquid crystal layer having a pretilt angle of 89.7° or more and less than 90° is disposed between the first and second electrodes. The first and second electrodes respectively form a pixel in opposing areas. The first electrode includes rectangularly shaped openings disposed with regularity in the pixel in a planar view. The openings include first and second openings with longitudinal directions respectively facing first and second directions, the second direction different from the first direction. The angle formed by the longitudinal directions of the first and second openings, and an alignment direction of liquid crystal molecules at the substantial center of the liquid crystal layer is 0° or more and less than 90°.
Owner:STANLEY ELECTRIC CO LTD

Liquid crystal display

The liquid crystal display device comprises a first and a second substrate placed opposite each other, a first electrode provided on the first substrate extending in a first direction, a second electrode provided on the second substrate extending in a second direction that is orthogonal to the first direction, and a vertically-aligned liquid crystal layer provided between the two substrates.A pixel is configured where the two electrodes intersect, and alignment treatment is performed to the first or second substrate in a direction parallel to the first direction, and the first electrode is a linear shape in which electrode edges on either side extend in the first direction, and the second electrode is of a broken curve shape in which an electrode edge of one side includes a line segment which obliquely crosses the first direction, and with the pixel, pixel edges are demarcated including the obliquely crossing line segments.
Owner:STANLEY ELECTRIC CO LTD

[back light module]

A back light module comprising a frame, a reflective plate, at least a light source, a caved transparent plate, a diffusion plate and several optical films is provided. The reflective plate is set up at a bottom section of the frame and the light source is set up within the fame above the reflective plate. The caved transparent plate is set up over the frame above the light source. The diffusion plate is set up over the caved transparent plate such that a gap is formed between diffusion plate and the caved transparent plate. The optical films are set up over the diffusion plate. With the caved transparent plate disposed inside the back light module, heat is prevented from passing from the back light module into a liquid crystal display panel.
Owner:AU OPTRONICS CORP

Liquid crystal display device

ActiveUS20090103012A1Excellent antireflection property and scratch resistance and durabilityShow unityNon-linear opticsIn planeRefractive index
A liquid crystal display device of an in-plane switching mode comprises at least an optically anisotropic member and a liquid crystal cell disposed between a pair of polarizers having absorption axes disposed approximately perpendicularly to each other, wherein nz>nx>ny (nx: a refractive index (n) in the direction of the in-plane slow axis; ny: n in the in-plane direction perpendicular to the above direction; nz: n in the direction of thickness, each at 550 nm); the optically anisotropic member comprises a layer comprising a material having a negative value of intrinsic birefringence; and the in-plane slow axis of the optically anisotropic member is approximately parallel or perpendicular to the absorption axis of a polarizer closer to the member. The antireflection property, scratch resistance and durability are excellent, the angle of field is wide, and uniform display of images with great contrast can be achieved at any angle of observation.
Owner:ZEON CORP

Liquid crystal display panel

The invention discloses a liquid crystal display panel, comprising pixel electrodes, common electrode lines, data lines and scanning lines, wherein at least two of the scanning lines are electrically connected to each other. The liquid crystal display panel has a plurality of conductive sections are disposed above at least part of each of the scanning lines other than said at least two scanning lines and electrically connected to the common electrode lines. The liquid crystal display panel of the invention can use Dot Inversion Driving with low power consumption. Meanwhile, the invention improves consistency of the RC delays on the individual scanning lines, decreases the difference among the RC delays of scanning signals on all of the scanning lines, and thereby achieves uniformity of a display frame on the liquid crystal display panel.
Owner:KUSN INFOVISION OPTOELECTRONICS

Liquid crystal display device

InactiveUS20130155347A1Suppressing occurrence of nonuniformityOccurrence of display nonuniformity can be suppressedNon-linear opticsLiquid-crystal displayLiquid crystal
A liquid crystal display device includes: a display panel which includes a TFT array substrate and a CF substrate arranged as opposed to each other, and a liquid crystal held therebetween; and a front panel which is adhered to a front surface side of the display panel with a resin layer interposed therebetween. A display region of the display panel is provided with main spacers formed on the CF substrate and making contact with the TFT array substrate, and sub-spacers formed on the CF substrate and not reaching the TFT array substrate. A ratio of a total contact area of the main spacers and the TFT array substrate with respect to an area of the display region of the liquid crystal panel is equal to or smaller than 0.02%.
Owner:TRIVALE TECH LLC

Apparatus and method for adaptively adjusting backlight

An apparatus and method for adaptively adjusting backlight are described. The backlight adjusting apparatus includes an intensity-pair distribution device, a brightness compensation module, a frame-adjusting device, a backlight control device, and a backlight module. The intensity-pair distribution device generates a plurality of intensity-pair distribution values of the image frames each composed of a plurality of pixel data. The brightness compensation module computes a dark-state ratio of the pixel data of a current image frame in response to the intensity-pair distribution values, and computes a brightness index of the current image frame in response to the dark-state ratio for generating a brightness compensating signal based on the dark-state ratio and the brightness index. The frame adjusting device adjusts the brightness of the total pixel data of the current image frame in response to brightness compensating signal. The backlight control device updates the brightness index of the current image frame in response to the brightness index of a previous image frame and the intensity-pair distribution values of the current image frame for generating a backlight control signal of the current image frame. The backlight module adjusts the backlight of the module in response to the backlight control signal.
Owner:AU OPTRONICS CORP

System for correcting display device and method for correcting the same

In a display device having a nonvolatile memory device, such as an active matrix type liquid crystal display device, display contents displayed on the display device are obtained by a camera device. The obtained information (corresponding to the display contents) is digital-converted and then processed to detect a defect and a nonuniformity on the display device, so that correction information is produced. The correction information is stored in the nonvolatile memory device of the display device. Display information to be displayed on the display device is processed using the stored correction information, so that display contents are corrected and a defect and a nonuniformity on the display contents are inconspicuous.
Owner:SEMICON ENERGY LAB CO LTD

Driving circuit for electro-optical device, method of driving electro-optical device, electro-optical device, and electronic apparatus

A driving circuit for an electro-optical device, that drives an electro-optical device having a plurality of data lines and a plurality of scanning lines extending so as to cross each other and a plurality of pixel units connected to the scanning lines and the data lines to form a display surface, includes a memory into / from which image signals are written / read, such that the plurality of pixel units perform grayscale display, a scanning line driving unit that selects the scanning lines and supplies scanning signals to the selected scanning lines, a data line driving unit that selects the data lines and supplies the image signals read out from the memory to the selected data lines, and a control unit that controls an operation of at least one of the scanning line driving unit and the data line driving unit, such that at least one of a selection sequence of the plurality of scanning lines and a selection sequence of the plurality of data lines is inverted at a predetermined inversion cycle, and that controls writing and reading of the image signals in the memory, such that the image signals written into the memory are read out in a state in which an arrangement sequence of the image signals is inverted at the inversion cycle.
Owner:138 EAST LCD ADVANCEMENTS LTD

Surface light source device and image display device

A surface light source device includes a diffusing member which diffuses light, a reflective member which reflects light, plural light sources provided aligned in a flat manner between the diffusing member and the reflective member, and a light control member provided between the plural light sources and the reflective member as well as arranged in a state that a gap is imposed between the reflective member and the light control member, which has a light-guiding function of guiding part of light emitted from respective light sources in an alignment direction of the light sources, in which the light control member has a rugged structure portion in which geometric shapes in cross section are continuously formed on at least one surface.
Owner:SONY CORP

Liquid crystal display device and electronic apparatus

Aspects of the invention can provide a transflective liquid crystal display device of vertical alignment mode capable of suitably controlling the direction that liquid crystal molecules are tilted. The liquid crystal display device can include a liquid crystal layer interposed between a pair of substrate and transmissive and reflective display regions in each dot region. An insulating film for varying the thickness of the liquid crystal layer in the reflective and transmissive display regions is provided. On a substrate having the insulating film formed thereon, an electrode slit for controlling the alignment of the liquid crystal molecules can be formed in the reflective display region. Similarly, a convex portion for controlling the alignment of the liquid crystal molecules can be formed in the transmissive display region.
Owner:BOE TECH GRP CO LTD

Flat panel display and method of manufacturing the same

A flat panel display includes a vacuum envelope, a cathode, a gate electrode substrate, and a phosphor screen and anode electrode. The vacuum envelope includes a front glass plate which is at least partly transparent and a substrate opposing the front glass plate. The cathode is formed on the substrate and has an electron-emitting source. The gate electrode substrate has an electron-passing hole and is arranged in the vacuum envelope to oppose the substrate to be separate from the cathode. The phosphor screen and anode electrode are formed on a surface of the front glass plate in the vacuum envelope. The gate electrode substrate includes at least an insulating substrate and a gate electrode. The insulating substrate has the electron-passing hole. The gate electrode is formed on the insulating substrate. A method of manufacturing a flat panel display is also disclosed.
Owner:NORITAKE CO LTD

Liquid crystal display with superposed contact holes and method of manufacturing the same

A display portion is divided by scan lines and signal lines into sections where pixels are provided. Contact holes each for connecting common wiring and a common electrode together are not formed for all the pixels, but decimated so as to be arranged in zigzags.
Owner:NEC LCD TECH CORP

Transflective liquid crystal display device having surface roughness in the transmissive area and homeotropic alignment

ActiveUS7106404B2Reduces and prevents display defectWide-viewing-angle displayNon-linear opticsDielectric anisotropySurface roughness
To provide a transflective liquid crystal display device that achieves high-contrast, bright display with a wide viewing angle, a liquid crystal display device includes a liquid crystal layer between a pair of substrates, and also includes dot regions, each having a transmissive display area and a reflective display area. The liquid crystal layer includes negative dielectric anisotropy liquid crystals with homeotropic alignment in an initial state. The reflective display area includes an insulation film to form irregularities on a reflective film. The insulation film is also disposed in the transmissive display area and forms irregularities on one of liquid-crystal contact surfaces of the substrates between which the liquid crystal layer is disposed.
Owner:BOE TECH GRP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products