Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4857 results about "Liquid crystal molecule" patented technology

In-plane field type liquid crystal display device comprising liquid crystal molecules with more than two kinds of reorientation directions

The purpose is to provide an active-matrix liquid crystal display device using a in-plane field type having wide viewing angle characteristics with homogeneous color tones, capable of realizing characristics equal to those of a CRT.In this active-matrix liquid crystal display device of the present invention, liquid crystal molecules of the liquid crystal layer have at least two kinds of driving (reorientation) directions by electric field over the substrate surface.
Owner:JAPAN DISPLAY INC +1

Optical element

The focal distance can be greatly changed by performing an electrical control in an optical element. The optical element comprises a first substrate having a first electrode, a second substrate, a second electrode arranged outside the second substrate, and a liquid crystal layer provided between the first substrate and the second substrate and constituted by liquid crystal molecules oriented. A first voltage is applied between the first electrode and the second electrode, thereby controlling the orientation of the liquid crystal molecules, whereby the optical element operates. A third electrode is provided on an insulating layer and outside the second electrode. A second voltage independent of the first voltage is applied to the third electrode, thereby changing the optical properties.
Owner:JAPAN SCI & TECH CORP

Liquid crystal composition comprising liquid crystal molecules and alignment promoter

A liquid crystal composition comprises liquid crystal molecules and an alignment promoter. The alignment promoter is represented by the formula (I). <paragraph lvl="0"><in-line-formula>(Hb-L1-)nBl (I) < / in-line-formula>In the formula (I), Hb is an aliphatic group having 4 to 40 carbon atoms, an aromatic group having 6 to 40 carbon atoms or an aliphatic substituted oligosiloxanoxy group having 1 to 40 carbon atoms. L1 is a single bond or a divalent linking group, and n is an integer of 2 to 12. Bl is an n-valent group comprising at least two rings.
Owner:FUJIFILM CORP

Semi-transmissive liquid crystal display device

In a semi-transmissive liquid crystal display device having a reflective region 5 and a transmissive region therein, a one-half wavelength plate 29 is disposed between a lower substrate 11 and a polarizer 21a provided on a side of the lower substrate. This makes liquid crystal molecules in at least the transmissive region 6 driven by a horizontal electric field and allows the device to operate in a normally-black mode in both the reflective region 5 and the transmissive region 6, realizing a semi-transmissive liquid crystal display device having wide viewing angle characteristics.
Owner:NEC LCD TECH CORP

Liquid crystal display device

It is an object of the present invention to provide a liquid crystal display device which has a wide viewing angle and less color-shift depending on an angle at which a display screen is seen and can display an image favorably recognized both outdoors in sunlight and dark indoors (or outdoors at night). The liquid crystal display device includes a first portion where display is performed by transmission of light and a second portion where display is performed by reflection of light. Further, a liquid crystal layer includes a liquid crystal molecule which rotates parallel to an electrode plane when a potential difference is generated between two electrodes of a liquid crystal element provided below the liquid crystal layer.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

ActiveUS20060146243A1Improve display qualitySubstantial aperture ratioNon-linear opticsCapacitanceCapacitive coupling
A liquid crystal display device according to the present invention is constituted of a TFT substrate and an opposing substrate which are arranged so as to be opposite to each other with a liquid crystal layer interposed therebetween. In addition, in the liquid crystal layer, formed is a polymer into which a polymer component added to liquid crystal is polymerized, and which determines directions in which liquid crystal molecules tilt when voltage is applied. In the TFT substrate, formed are a sub picture element electrode directly connected to a TFT and a sub picture element electrode connected to the TFT through capacitive coupling. In each of these sub picture element electrodes, formed are slits extending in directions respectively at angles of 45 degrees, 135 degrees, 225 degrees and 315 degrees to the X axis.
Owner:SHARP KK

Viewing angle control element, method of manufacturing the same, liquid crystal display device, and electronic apparatus

A liquid crystal display device includes a display panel and a viewing angle control panel. The viewing angle control panel includes a pair of substrates, a liquid crystal layer interposed between the pair of substrates, and a pair of electrodes for applying an electric field to the liquid crystal layer. The liquid crystal layer is composed from hybrid-aligned liquid crystal molecules. The viewing angle of the display panel is controlled by changing an alignment state of the hybrid-aligned liquid crystal molecules in the liquid crystal layer by voltage applied by the electrodes.
Owner:BOE TECH GRP CO LTD

Liquid crystal display device with improved viewing angle characteristics

A liquid crystal display device, in which the liquid crystal molecules are aligned vertically when no voltage is applied, includes pixels each having plural sub-pixel electrodes, a data bus drive circuit for applying drive signals to the sub-pixel electrodes via a data bus line and a switching element, and alignment regulation structure for regulating the direction of alignment of liquid crystal molecules. The first and second sub-pixel electrodes have different areas. The data bus drive circuit applies a first drive signal, which causes luminance to change from minimum to maximum for an increase of input grayscale of image signal, to the first sub-pixel electrode, and a second drive signal, which causes the luminance to be lower than the first drive signal, to the second sub-pixel electrode.
Owner:AU OPTRONICS CORP

Method for controlling LED-based backlight module

The method of the present invention turns off the line of LEDs of a backlight module behind the currently enabled scanline of a LCD device so that the transient behavior of the liquid crystal molecules are less obvious, thereby enhancing the dynamic response of the LCD device. For one type of embodiments, in accordance with the top-down scanning of the LCD device, the corresponding horizontal lines of the LEDs of the backlight module are turned off in a certain manner so that they exhibit a lighting (or, more precisely, darkening) pattern as if they are also “scanned” from top to down. For another type of embodiments, the horizontal lines of the LEDs of the backlight module are turned off and on simultaneously so that the backlight module actually “flashes” the LCD device.
Owner:VASTVIEW TECH

Display panel, display apparatus having the same, and method thereof

A display panel includes an array substrate and an opposite substrate. The array substrate includes a plurality of data lines, a plurality of gate lines, a plurality of first signal lines, a plurality of second signal lines and a plurality of pixels. Each of the pixels includes a pixel electrode and a common electrode insulated from the pixel electrode. The opposite substrate includes a plurality of connecting members. At least one of the connecting members is electrically connected to at least one of the first signal lines and the second signal lines by an externally provided pressure. Thus, when an externally provided pressure is applied to the display panel in order to perform a touch screen function, an alignment of the liquid crystal molecules disposed on the array substrate may not be substantially changed, and a display quality may be improved.
Owner:SAMSUNG DISPLAY CO LTD

Liquid crystal display device, alignment film, and methods for manufacturing the same

A liquid crystal display device is provided, including a liquid crystal layer interposed between a first display panel and a second display panel; and an alignment film formed on at least one of the first and second display panels, the alignment film including first polysiloxanes and second polysiloxanes disposed on the first polysiloxanes, wherein a first portion of silicon atoms of the second polysiloxanes are bonded to vertical functional groups interacting with liquid crystal molecules in the liquid crystal layer, and to first pre-tilting functional groups aligning the liquid crystal molecules in the liquid crystal layer to be tilted with respect to at least one of the first and second display panels by being cross-linked. The bonding structure of the first and the second polysiloxanes being different.
Owner:SHENZHEN CHINA STAR OPTOELECTRONICS TECH CO LTD

Display device and method of manufacturing the same

A display device includes: a first panel having a pixel region including a pixel electrode therein; a second panel having a common electrode facing the first panel; a liquid crystal layer having vertically aligned liquid crystal molecules interposed between the first and second panels; a first alignment layer disposed on the pixel electrode; and a second alignment layer disposed on the common electrode. At least one of the pixel electrode and the common electrode has a micro slit pattern. At least one of the first and second alignment layers divides the pixel region into domains, is formed to have pretilt directions corresponding to a given domain, and pretilts the vertically aligned liquid crystal molecules in the given domain. A direction of summed horizontal components of a fringe field at an edge of the pixel region is substantially equal to a direction of summed horizontal components of a pretilt direction of the at least one of the first and second alignment layer.
Owner:SAMSUNG DISPLAY CO LTD

Pixel electrode panel, a liquid crystal display panel assembly and methods for manufacturing the same

A liquid crystal display panel, including: a pixel electrode formed on a first substrate; an alignment layer formed on the pixel electrode, wherein the alignment layer includes an alignment layer material and aligns first liquid crystal molecules in a direction substantially perpendicular to the pixel electrode; and a photo hardening layer formed on the alignment layer, wherein the photo hardening layer includes a photo hardening layer material and aligns second liquid crystal molecules to be tilted with respect to the pixel electrode, wherein the alignment layer material and the photo hardening layer material have different polarities from each other.
Owner:TCL CHINA STAR OPTOELECTRONICS TECH CO LTD

Liquid crystal display device and associated fabrication method

A liquid crystal display device having a pixel electrode, a counter electrode, and a liquid crystal between the electrodes. Liquid crystal molecules in contact or near the respective opposed surfaces of the electrodes have specified pretilt angles as a result of the conditioning of those surfaces. When no voltage is applied, the liquid crystal is in a splay alignment state; applying voltage prior to image display causes a transition of transformation of the splay alignment state to a bend alignment state; image display is carried out under the bend alignment state. Transition from the splay alignment state to the bend alignment state is promoted by having a large pretilt angle domain formed on at least one of the electrode surfaces causing a larger pretilt angle of liquid crystal molecules than is present in a region surrounding the large pretilt angle domain.
Owner:TOSHIBA MATSUSHITA DISPLAY TECH

Liquid-crystal display and polarizing plate

A novel liquid crystal display is disclosed. The display comprises a pair of substrates disposed facing each other and at least one of which has an electrode, a liquid-crystal layer being sandwiched in between the pair of substrates and comprising liquid-crystal molecules aligned along with a first alignment axis and a second alignment axis respectively formed on facing surfaces of the first and second substrates, a pair of polarizing plates disposed sandwiching the liquid-crystal layer, and at least an optically anisotropic layer disposed between the liquid-crystal layer and either of the polarizing plates, and comprising at least one liquid crystal compound which is aligned along with a third alignment axis and is fixed in the alignment state. And their disposition satisfies at least one of Condition (1): the alignment axes of the substrates are not parallel to transmission axes of the polarizing plates; and Condition (2): the alignment axis of the substrate is not parallel to the alignment axis of the optically anisotropic layer.
Owner:FUJIFILM CORP

In plane switching LCD with 3 electrode on bottom substrate and 1 on top substrate

A liquid crystal panel which can operate at high speed is provided. The liquid crystal panel is constructed such that an electric field having a direction parallel to substrates is formed between pairs of electrodes with respect to a liquid crystal layer in which TN type liquid crystal is disposed. This electric field boosts a change from a state in which major axes of liquid crystal molecules orient in a direction vertical to the substrates to a state in which the major axes orient in the direction parallel to the substrates. Thereby, the change of the states of the liquid crystal molecules which has relied only on orientation restricting force in the past may be accelerated. Then, it allows the liquid crystal panel to respond quickly.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display and method of manufacturing the same

The invention has an object to provide a liquid crystal display in which a wide angle of view is obtained and a response time at a halftone can be shortened by regulating an alignment orientation of a liquid crystal by the use of a polymer fixation system in which a liquid crystal layer containing a polymerizable component is sealed between substrates, and the polymerizable component is polymerized while a voltage is applied to the liquid crystal layer to fix a liquid crystal alignment. A liquid crystal layer containing a polymer for regulating a pretilt angle of a liquid crystal molecule and a tilt direction at a time of driving is sealed between two substrates arranged opposite to each other. A plurality of stripe-like electrode patterns in which a pattern width is formed to be wider than a width of a space, are arranged so that the liquid crystal molecule is aligned in a longitudinal direction of the pattern when the polymer is formed by solidifying a polymerizable component mixed in the liquid crystal layer while a voltage is applied to the liquid crystal layer.
Owner:SHARP KK

Low-twist chiral liquid crystal polarization gratings and related fabrication methods

A polarization grating includes a substrate and a first polarization grating layer on the substrate. The first polarization grating layer includes a molecular structure that is twisted according to a first twist sense over a first thickness defined between opposing faces of the first polarization grating layer. Some embodiments may include a second polarization grating layer on the first polarization grating layer. The second polarization grating layer includes a molecular structure that is twisted according to a second twist sense that is opposite the first twist sense over a second thickness defined between opposing faces of the second polarization grating layer. Also, a switchable polarization grating includes a liquid crystal layer between first and second substrates. The liquid crystal layer includes liquid crystal molecules having respective relative orientations that are rotated over a thickness defined between opposing faces thereof by a twist angle that is different from a relative phase angle between respective first and second periodic alignment conditions of the first and second substrates. Related devices and fabrication methods are also discussed.
Owner:META PLATFORMS TECH LLC

Viewing angle switchable display apparatus

A viewing angle switchable display apparatus including a display panel, an electrically controlled viewing angle switching device, an electrically controlled light scattering switching device, and a backlight module is provided. The electrically controlled viewing angle switching device includes two first transparent substrates, two first transparent conductive layers, a liquid crystal layer, and a first polarizer located on a side of the electrically controlled viewing angle switching device which is far away from the display panel. The liquid crystal layer includes liquid crystal molecules, and optical axes of the liquid crystal molecules are parallel or perpendicular to a transmission axis of the first polarizer. The electrically controlled light scattering switching device is located between the display panel and the backlight module and includes two second transparent substrates, two second transparent conductive layers, and an electronically controlled polymer material layer.
Owner:CORETRONIC

View angle control element and display device provided with the same

A view angle control element capable of limiting a view angle without degrading image quality (front quality) when seen from a front side and a display device provided with the view angle control element are provided. A liquid crystal display device (1) includes a liquid crystal panel (10), and a view angle control film (20) that controls a view angle of the liquid crystal panel (10). The view angle control film (20) is a laminated film including at least a liquid crystal film (21) and a linearly polarizing plate (22). In the liquid crystal film (21), liquid crystal molecules are solidified while being aligned with major axes tilted in a predetermined azimuth angle direction from a normal direction of a film surface. The linearly polarizing plate (22) of the view angle control film (20) and the linearly polarizing plate (14) of the liquid crystal panel (10) are placed so that polarization transmission axes thereof cross a major axis direction of the liquid crystal molecules when seen from the normal direction.
Owner:SHARP KK

Liquid crystal display device and manufacturing method thereof

An electro-optical device typified by an active matrix type liquid crystal display device, is manufactured by cutting a rubbing process, and in addition, a reduction in the manufacturing cost and an improvement in the yield are realized by reducing the number of process steps to manufacture a TFT. By forming a pixel TFT portion having a reverse stagger type n-channel TFT, and a storage capacitor, by performing three photolithography steps using three photomasks, and in addition, by having a uniform cell gap by forming wall-like spacers by performing one photolithography step, without performing a rubbing process, a multi-domain perpendicular orientation type liquid crystal display device having a wide viewing angle display, and in which a switching direction of the liquid crystal molecules is controlled, can be realized.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

A liquid crystal display device includes: a vertical alignment liquid crystal layer; first and second substrates facing each other with the liquid crystal layer interposed; first and second electrodes arranged on the first and second substrates to face the liquid crystal layer; and at least one alignment film in contact with the liquid crystal layer. A pixel region includes a first liquid crystal domain in which liquid crystal molecules are tilted in a first direction around the center of a plane, and approximately at the middle of the thickness, of the liquid crystal layer responsive to a voltage applied. The first liquid crystal domain is close to at least a part of an edge of the first electrode. The part includes a first edge portion in which an azimuthal direction, perpendicular to the part and pointing toward the inside of the first electrode, defines an angle greater than 90 degrees to the first direction. The first or second substrate has an opaque member including a first opaque portion for selectively shielding at least a part of the first edge portion from incoming light.
Owner:SHARP KK

Viewing angle control device and viewing angle controllable display apparatus

A viewing angle control device including at least one liquid crystal panel, at least one compensation film and polarizers is provided. Each of the at least one liquid crystal panel includes two transparent conductive layers and liquid crystal molecules. The polarizers include at least one first polarizer and a second polarizer. The at least one first polarizer is located between the at least one compensation film and the at least one liquid crystal panel. The second polarizer is located at a side of the at least one liquid crystal panel, the at least one compensation film and the at least one first polarizer. When there is no potential difference between the transparent conductive layers, an optical axis of each of the liquid crystal molecules is parallel or vertical to a transmission axis of the at least one first polarizer. A viewing angle controllable display apparatus is also provided.
Owner:CORETRONIC

Lens array device and image display

The lens array device includes: first and second substrates; a first electrode group formed on the first substrate to include transparent electrodes extending in a first direction; a second electrode group formed on the second substrate to include transparent electrodes extending in a second direction; and a liquid crystal layer with refractive index anisotropy arranged between the first and second substrates to produce a lens effect by changing the liquid crystal molecule alignment. The liquid crystal layer electrically changes into one of three states according to voltages applied to the first and second electrode groups. The three states include a state with no lens effect, a first lens state where a lens effect of a first cylindrical lens extending in the first direction is produced, and a second lens state where a lens effect of a second cylindrical lens extending in the second direction is produced.
Owner:SONY CORP

IPS LCD having molecules remained parallel with electric fields applied

A liquid crystal display device with an IPS mode having wide view angle characteristic and capable of improving response time and transmittance, is disclosed. A liquid crystal display device with an in-plane switching mode includes a first substrate having first and second electrodes formed thereon. A second substrate is disposed opposite to the first substrate with a selected distance. On a surface of the second substrate are also formed third and fourth electrodes. When a voltage is applied to the respective electrodes, a first electric field which is parallel to the planes of the substrates is generated between the first electrode and the second electrode, and a second electric field which is parallel to the planes of the substrates and is orthogonal to the first electric field is generated between the third electrode and the fourth electrode. A polarizer is arranged on the outside of the first substrate and a analyzer is arranged on the outside of the second substrate. A first homogeneous alignment film is applied to the first substrate on which the first and second electrodes are formed. A second homogeneous alignment film is also applied to the second substrate on which the third and fourth electrodes are formed. A liquid crystal layer having liquid crystal molecules is interposed between the both substrates, wherein the liquid crystal molecules are arranged in a homogeneous state in an absence of the electric field and are twisted in a presence of the electric field.
Owner:BOE HYDIS TECH

Wide view angle LCD operable in IPS mode which uses a pixel electrode as a shield to prevent disturbances in the electric field of a display pixel portion of the LCD

The present invention discloses a liquid crystal display device which is arranged by: (A) the first substrate including a plurality of scanning lines and a plurality of signal lines arranged in a matrix form; a common signal line extended in parallel to one of the scanning lines and the signal lines, for applying a reference potential thereto; a pixel electrode; and a thin-film transistor having a source electrode connected to the pixel electrode, a drain electrode connected to the signal line, and a gate electrode connected to the scanning line, the thin-film transistor being formed in an intersection portion between the scanning line and the signal line; (B) the second substrate including a black matrix layer and positioned opposite to the first substrate with sandwiching a liquid crystal layer between the first substrate and the second substrate; and (C) an insulating layer sandwiched between the pixel electrode of the first substrate and the scanning line. While a voltage is applied between the common signal line and the pixel electrode to thereby produce an electric field, a direction of a molecular axis of liquid crystal molecules contained in the liquid crystal layer is rotated within a plane located in parallel to the first substrate so as to perform a liquid crystal display; and further said pixel electrode of the first substrate covers a portion of the scanning lines located in a region other than such a region where the thin-film transistor is formed.
Owner:NEC LCD TECH CORP

Variable hologram element, and optical device using the same

The invention relates to an optical element with variable optical properties, which ensures that the amount of light available is increased, and an optical device using the same. In a liquid crystal variable hologram element 3, polymer layers 18 and liquid crystal layers 19 are alternately arranged between transparent substrates 16 and 17, with liquid crystal particles 20 lining up in each liquid crystal layer 19. When voltages are applied on transparent electrodes 21 and 22, liquid crystal molecules 23 have their longitudinal directions oriented vertically with respect to the electrodes, so that the refractive index of the polymer layers 18 is substantially equal to that of the liquid crystal layers 19, resulting in no development of hologram. When the voltages are held off, the refractive index of the polymer layers 18 is different from that of the liquid crystal layers 19. This repetition gives rise to an interference fringe action, by which a hologram can be developed. Thus, the variable hologram element 3 can function as a hologram reflecting mirror.
Owner:OLYMPUS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products