Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

116994 results about "Capacitance" patented technology

Capacitance is the ratio of the change in an electric charge in a system to the corresponding change in its electric potential. There are two closely related notions of capacitance: self capacitance and mutual capacitance. Any object that can be electrically charged exhibits self capacitance. A material with a large self capacitance holds more electric charge at a given voltage than one with low capacitance. The notion of mutual capacitance is particularly important for understanding the operations of the capacitor, one of the three elementary linear electronic components (along with resistors and inductors).

Backplanes for display applications, and components for use therein

A display pixel unit provides reduced capacitative coupling between a pixel electrode and a source line. The unit includes a transistor, the pixel electrode, and the source line. The source line includes an extension that provides a source for the transistor. A patterned conductive portion is disposed adjacent to the source line.
Owner:E INK CORPORATION

Method for calculating transducer capacitance to determine transducer temperature

A method for calculating the capacitance of a transducer (C0) without knowing the exact resonance frequency of a transducer / blade combination is achieved by sweeping across a broad frequency range which contains resonant and non-resonant frequencies where C0 can be measured. A pre-defined frequency range is set independently of the resonance frequency of a specific transducer / blade combination. C0 of the transducer / blade is measured at several different frequencies within the pre-defined frequency range to ensure that invalid C0 measurements are disregarded, and the temperature of the transducer is calculated based on valid C0 measurements. The determined transducer temperature, based on C0 measurements, can be used to optimize performance and / or provide a safety shutdown mechanism for the generator.
Owner:ETHICON ENDO SURGERY INC

Method and apparatus for determining parameters of linear motion in a surgical instrument

A surgical instrument and method of controlling the surgical instrument are disclosed. The surgical instrument includes a housing and an elongated shaft that extends distally from the housing and defines a first longitudinal axis. The surgical instrument also includes a firing rod disposed in the elongated shaft and a drive mechanism disposed at least partially within the housing. The drive mechanism mechanically cooperates with the firing rod to move the firing rod. A motion sensor senses a change in the electric field (e.g., capacitance, impedance, or admittance) between the firing rod and the elongated shaft. The measurement unit determines a parameter of the motion of the firing rod, such as the position, speed, and direction of the firing rod, based on the sensed change in the electric field. A controller uses the measured parameter of the motion of the firing rod to control the drive mechanism.
Owner:TYCO HEALTHCARE GRP LP

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor / capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

Capacitive touch screen stylus

In some embodiments, a stylus for providing input to a capacitive touch screen, having a tip including or consisting of conductive felt, which provides a deformable conductive surface for contacting the touch screen. The tip is produced by felting base fibers (which are typically non-conductive) with conductive fibers. In other embodiments, a capacitive touch stylus having at least a first mode of operation and a second mode of operation, and including at least one conductive tip and switched circuitry (preferably, passive circuitry) including at least one switch biased in a default state indicative of the first mode of operation but switchable into a second state indicative of the second mode of operation in response to movement of the tip (typically, in response to exertion of not less than a threshold force on the tip). In some embodiments, a stylus having a conductive tip (e.g., a conductive, felted tip) and including switched circuitry (preferably, passive circuitry) having a first state which couples a capacitance to the tip, where the capacitance is sufficient to allow a capacitive touch screen device to recognize (as a touch) simple contact of the tip on the screen of the touch screen device, and a second state which decouples the capacitance from the tip, thereby preventing the touch screen device from recognizing (as a touch) simple contact of the tip on the screen.
Owner:RB CONTROLS CO

Protective enclosure and watertight adapter for an interactive flat-panel controlled device

A protective enclosure is disclosed for an interactive flat-panel control device. The protective enclosure is watertight, crush-resistant, and impact-resistant. An electrical adapter may disposed within the protective enclosure and covered with an elastomeric covering that permits a connector of the adapter to flex with respect to the lower shell of the enclosure so that the connector may easily be inserted into an interface jack of the electronic device. The elastomeric covering also provides a watertight seal that enables the protective enclosure to be submersibly watertight. While providing protection, the protective enclosure simultaneously allows smooth and accurate interaction with the interactive flat-panel controlled device. The protective enclosure has a protective membrane that permits RF and touch screen stylus inputs, as well as capacitance, such as from a finger, to be transmitted accurately to the flat-panel control. The hardness and texture of the protective membrane allows a stylus or finger to glide smoothly along the surface of the membrane without catching or sticking. The protective enclosure is further adapted to allow infrared and other communication signals while the device is secured inside the case. Further, electrical connections can be made through the case without affecting the protection afforded the electronic device inside. The protective enclosure may have a removable cable management belt clip that has a flange that retains and prevents entangling of an accessory cable for the interactive flat-panel control device.
Owner:OTTER PRODS

Method and apparatus for determining parameters of linear motion in a surgical instrument

ActiveCN102217961AFrequency increase or decreaseDiagnosticsSurgical manipulatorsLinear motionCapacitance
The invention discloses a surgical instrument and method of controlling the surgical instrument, especially discloses a method and apparatus for determining parameters of linear motion in a surgical instrument. The surgical instrument includes a housing and an elongated shaft that extends distally from the housing and defines a first longitudinal axis. The surgical instrument also includes a firing rod disposed in the elongated shaft and a drive mechanism disposed at least partially within the housing. The drive mechanism mechanically cooperates with the firing rod to move the firing rod. A motion sensor senses a change in the electric field (e.g., capacitance, impedance, or admittance) between the firing rod and the elongated shaft. The measurement unit determines a parameter of the motion of the firing rod, such as the position, speed, and direction of the firing rod, based on the sensed change in the electric field. A controller uses the measured parameter of the motion of the firing rod to control the drive mechanism.
Owner:TYCO HEALTHCARE GRP LP

Wireless power component selection

A method includes providing a source resonator including a first conductive loop in parallel with a first capacitive element and in series with a first adjustable element the source resonator having a source target impedance, providing a plurality of device resonators each including a conductive loop and having a device target impedance, connecting, for each of the plurality of device resonators, a resistor corresponding to the device target impedance in series with the conductive loop of each of the plurality of device resonators, connecting a network analyzer in series with the first conductive loop and adjusting at least one of the first capacitive element and the first adjustable element until a measured impedance of the source resonator is within a predetermined range of the source target impedance.
Owner:WITRICITY CORP

Programmable sub-surface aggregating metallization structure and method of making same

A programmable sub-surface aggregating metallization sructure ("PSAM") includes an ion conductor such as a chalcogenide-glass which includes metal ions and at least two electrodes disposed at opposing surfaces of the ion conductor. Preferably, the ion conductor includes a chalcogenide material with Group IB or Group IIB metals. One of the two electrodes is preferably configured as a cathode and the other as an anode. When a voltage is applied between the anode and cathode, a metal dendrite grows from the cathode through the ion conductor towards the anode. The growth rate of the dendrite may be stopped by removing the voltage or the dendrite may be retracted back towards the cathode by reversing the voltage polarity at the anode and cathode. When a voltage is applied for a sufficient length of time, a continuous metal dendrite grows through the ion conductor and connects the electrodes, thereby shorting the device. The continuous metal dendrite then can be broken by applying another voltage. The break in the metal dendrite can be reclosed by applying yet another voltage. Changes in the length of the dendrite or the presence of a break in the dendrite affect the resistance, capacitance, and impedance of the PSAM.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA +1

Object position detection system and method

A proximity sensor system includes a sensor matrix array having a characteristic capacitance on horizontal and vertical conductors connected to sensor pads. The capacitance changes as a function of the proximity of an object or objects to the sensor matrix. The change in capacitance of each node in both the X and Y directions of the matrix due to the approach of an object is converted to a set of voltages in the X and Y directions. These voltages are processed by digital circuitry to develop electrical signals representative of the centroid of the profile of the object, i.e, its position in the X and Y dimensions. Noise reduction and background level setting techniques inherently available in the architecture are employed.
Owner:SYNAPTICS INC

Low capacitance junction-isolation for bulk FinFET technology

ActiveUS7101763B1Good junction isolationLow capacitance benefitSemiconductor/solid-state device manufacturingSemiconductor devicesDielectricCapacitance
The present invention provides a SiGe-based bulk integration scheme for generating FinFET devices on a bulk Si substrate in which a simple etch, mask, ion implant set of sequences have been added to accomplish good junction isolation while maintaining the low capacitance benefits of FinFETs. The method of the present invention includes providing a structure including a bottom Si layer and a patterned stack comprising a SiGe layer and a top Si layer on the bottom Si layer; forming a well region and isolation regions via implantation within the bottom Si layer; forming an undercut region beneath the top Si layer by etching back the SiGe layer; and filling the undercut with a dielectric to provide device isolation, wherein the dielectric has an outer vertical edge that is aligned to an outer vertical edge of the top Si layer.
Owner:GLOBALFOUNDRIES US INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products