Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

115636 results about "Capacitance" patented technology

Capacitance is the ratio of the change in an electric charge in a system to the corresponding change in its electric potential. There are two closely related notions of capacitance: self capacitance and mutual capacitance. Any object that can be electrically charged exhibits self capacitance. A material with a large self capacitance holds more electric charge at a given voltage than one with low capacitance. The notion of mutual capacitance is particularly important for understanding the operations of the capacitor, one of the three elementary linear electronic components (along with resistors and inductors).

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor/capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

Capacitive touch screen stylus

In some embodiments, a stylus for providing input to a capacitive touch screen, having a tip including or consisting of conductive felt, which provides a deformable conductive surface for contacting the touch screen. The tip is produced by felting base fibers (which are typically non-conductive) with conductive fibers. In other embodiments, a capacitive touch stylus having at least a first mode of operation and a second mode of operation, and including at least one conductive tip and switched circuitry (preferably, passive circuitry) including at least one switch biased in a default state indicative of the first mode of operation but switchable into a second state indicative of the second mode of operation in response to movement of the tip (typically, in response to exertion of not less than a threshold force on the tip). In some embodiments, a stylus having a conductive tip (e.g., a conductive, felted tip) and including switched circuitry (preferably, passive circuitry) having a first state which couples a capacitance to the tip, where the capacitance is sufficient to allow a capacitive touch screen device to recognize (as a touch) simple contact of the tip on the screen of the touch screen device, and a second state which decouples the capacitance from the tip, thereby preventing the touch screen device from recognizing (as a touch) simple contact of the tip on the screen.
Owner:RB CONTROLS CO

Protective enclosure and watertight adapter for an interactive flat-panel controlled device

A protective enclosure is disclosed for an interactive flat-panel control device. The protective enclosure is watertight, crush-resistant, and impact-resistant. An electrical adapter may disposed within the protective enclosure and covered with an elastomeric covering that permits a connector of the adapter to flex with respect to the lower shell of the enclosure so that the connector may easily be inserted into an interface jack of the electronic device. The elastomeric covering also provides a watertight seal that enables the protective enclosure to be submersibly watertight. While providing protection, the protective enclosure simultaneously allows smooth and accurate interaction with the interactive flat-panel controlled device. The protective enclosure has a protective membrane that permits RF and touch screen stylus inputs, as well as capacitance, such as from a finger, to be transmitted accurately to the flat-panel control. The hardness and texture of the protective membrane allows a stylus or finger to glide smoothly along the surface of the membrane without catching or sticking. The protective enclosure is further adapted to allow infrared and other communication signals while the device is secured inside the case. Further, electrical connections can be made through the case without affecting the protection afforded the electronic device inside. The protective enclosure may have a removable cable management belt clip that has a flange that retains and prevents entangling of an accessory cable for the interactive flat-panel control device.
Owner:OTTER PRODS

Programmable sub-surface aggregating metallization structure and method of making same

A programmable sub-surface aggregating metallization sructure ("PSAM") includes an ion conductor such as a chalcogenide-glass which includes metal ions and at least two electrodes disposed at opposing surfaces of the ion conductor. Preferably, the ion conductor includes a chalcogenide material with Group IB or Group IIB metals. One of the two electrodes is preferably configured as a cathode and the other as an anode. When a voltage is applied between the anode and cathode, a metal dendrite grows from the cathode through the ion conductor towards the anode. The growth rate of the dendrite may be stopped by removing the voltage or the dendrite may be retracted back towards the cathode by reversing the voltage polarity at the anode and cathode. When a voltage is applied for a sufficient length of time, a continuous metal dendrite grows through the ion conductor and connects the electrodes, thereby shorting the device. The continuous metal dendrite then can be broken by applying another voltage. The break in the metal dendrite can be reclosed by applying yet another voltage. Changes in the length of the dendrite or the presence of a break in the dendrite affect the resistance, capacitance, and impedance of the PSAM.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products