Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

748 results about "Dendrite" patented technology

Dendrites (from Greek δένδρον déndron, "tree"), also dendrons, are branched protoplasmic extensions of a nerve cell that propagate the electrochemical stimulation. received from other neural cells to the cell body, or soma, of the neuron from which the dendrites project. Electrical stimulation is transmitted onto dendrites by upstream neurons (usually via their axons) via synapses which are located at various points throughout the dendritic tree. Dendrites play a critical role in integrating these synaptic inputs and in determining the extent to which action potentials are produced by the neuron. Dendritic arborization, also known as dendritic branching, is a multi-step biological process by which neurons form new dendritic trees and branches to create new synapses. The morphology of dendrites such as branch density and grouping patterns are highly correlated to the function of the neuron. Malformation of dendrites is also tightly correlated to impaired nervous system function. Some disorders that are associated with the malformation of dendrites are autism, depression, schizophrenia, Down syndrome and anxiety.

Programmable metallization cell structure and method of making same

A programmable metallization cell ("PMC") comprises a fast ion conductor such as a chalcogenide-metal ion and a plurality of electrodes (e.g., an anode and a cathode) disposed at the surface of the fast ion conductor and spaced a set distance apart from each other. Preferably, the fast ion conductor comprises a chalcogenide with Group IB or Group IIB metals, the anode comprises silver, and the cathode comprises aluminum or other conductor. When a voltage is applied to the anode and the cathode, a non-volatile metal dendrite grows from the cathode along the surface of the fast ion conductor towards the anode. The growth rate of the dendrite is a function of the applied voltage and time. The growth of the dendrite may be stopped by removing the voltage and the dendrite may be retracted by reversing the voltage polarity at the anode and cathode. Changes in the length of the dendrite affect the resistance and capacitance of the PMC. The PMC may be incorporated into a variety of technologies such as memory devices, programmable resistor/capacitor devices, optical devices, sensors, and the like. Electrodes additional to the cathode and anode can be provided to serve as outputs or additional outputs of the devices in sensing electrical characteristics which are dependent upon the extent of the dendrite.
Owner:AXON TECH +1

Programmable sub-surface aggregating metallization structure and method of making same

A programmable sub-surface aggregating metallization sructure ("PSAM") includes an ion conductor such as a chalcogenide-glass which includes metal ions and at least two electrodes disposed at opposing surfaces of the ion conductor. Preferably, the ion conductor includes a chalcogenide material with Group IB or Group IIB metals. One of the two electrodes is preferably configured as a cathode and the other as an anode. When a voltage is applied between the anode and cathode, a metal dendrite grows from the cathode through the ion conductor towards the anode. The growth rate of the dendrite may be stopped by removing the voltage or the dendrite may be retracted back towards the cathode by reversing the voltage polarity at the anode and cathode. When a voltage is applied for a sufficient length of time, a continuous metal dendrite grows through the ion conductor and connects the electrodes, thereby shorting the device. The continuous metal dendrite then can be broken by applying another voltage. The break in the metal dendrite can be reclosed by applying yet another voltage. Changes in the length of the dendrite or the presence of a break in the dendrite affect the resistance, capacitance, and impedance of the PSAM.
Owner:THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIV OF ARIZONA +1

Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte

InactiveUS20140205909A1Improves cycle characteristic and rate characteristic and coulombic efficiency of batteryImprove securityFuel and primary cellsAlkaline accumulatorsCross-linkShape change
The purpose of the present invention is to provide a zinc negative electrode mixture for forming negative electrodes of safe and economic batteries exhibiting excellent battery performance; and a gel electrolyte or a negative electrode mixture which can be suitably used for forming a storage battery exhibiting excellent battery performance such as a high cycle characteristic, rate characteristic, and coulombic efficiency while suppressing change in form, such as shape change and dendrite, and passivation of the electrode active material. Another purpose of the present invention is to provide a battery including the zinc negative electrode mixture or the gel electrolyte. (1) The zinc negative electrode mixture contains a zinc-containing compound and a conductive auxiliary agent. The zinc-containing compound and / or the conductive auxiliary agent contain(s) particles having an average particle size of 1000 μm or smaller and / or particles having an aspect ratio (vertical / lateral) of 1.1 or higher. (2) The gel electrolyte intended to be used in batteries has a cross-linked structure formed by a multivalent ion and / or an inorganic compound. (3) The negative electrode mixture intended to be used in batteries contains a negative electrode active material and a polymer.
Owner:NIPPON SHOKUBAI CO LTD

Metal-organic frame material based composite battery diaphragm and preparation method and application thereof

The invention discloses a metal-organic frame material based composite battery diaphragm and a preparation method and application thereof. The preparation method comprises the following steps: (1), synthesizing a metal-organic frame material precursor; (2), compounding the metal-organic frame material precursor and a two-dimensional material or a polymer material to obtain the metal-organic framematerial based composite battery diaphragm. The diaphragm is high in porosity and large in specific surface area, the electrolyte wettability of the diaphragm can be improved, and the ion transport number of the diaphragm is greatly increased; the diaphragm has the advantage of an adjustable pore size, and through a suitable pore size, shuttling of electrolyte ions can be effectively controlled, occurrence of adverse side reactions can be inhibited, the battery capacity can be increased and the cycle life can be prolonged; through a uniform pore structure, the passing ions can be uniformly dispersed on the surface of an electrode, so that growth of dendrites are fundamentally inhibited, the cycle life of a battery is effectively prolonged, and the safety performance of the battery is improved; the metal-organic frame material based composite battery diaphragm has good flexibility and mechanical properties and can be applied to assembly of a practical soft pack battery.
Owner:NANJING UNIV

Quasi-continuous laser metal 3D printing method capable of realizing regulation of nickel base alloy crystallographic texture

The invention discloses a quasi-continuous laser metal 3D printing method capable of realizing regulation of nickel base alloy crystallographic texture. Laser output is set as a quasi-continuous lasermode, and then a laser metal 3D printing technical window is preliminarily optimized. The temperature field of a molten bath under the preliminarily optimized parameter is calculated by using a finite element heat transfer model; the temperature gradient G and the cooling rate xi of the moving boundary of the molten bath during closing of laser in a single pulse period are extracted, and the growth length L of a single pulse internal columnar dendrite is worked out according to a structure growth theoretical model; the laser parameter is optimized according to the matching rule that the ratioof the scanning speed V to pulse frequency f is 0.5-0.8L, and finally 3D printing forming is conducted according to the optimized parameter, so that a formed part with the consistent crystallographicorientation height is obtained. By regulating the heat source output mode, an effective remelting mechanism for mixed crystal or isometric crystal is introduced in the scanning direction, all columnar dendrite growth is obtained, and the consistency of grain orientation is remarkably improved.
Owner:HUNAN UNIV

Lithium-lanthanum-zirconium oxide-based solid electrolyte material capable of inhibiting lithium dendrites, and preparation method and application thereof

The invention discloses a lithium-lanthanum-zirconium oxide-based solid electrolyte material capable of inhibiting lithium dendrites, and a preparation method and an application thereof. The lithium-lanthanum-zirconium oxide-based solid electrolyte material capable of inhibiting the lithium dendrites comprises an inner core and a coating layer which coats the surface of the inner core; the core isa lithium-lanthanum-zirconium oxide-based solid electrolyte (LLZO); and a material of the coating layer is a lithium-containing oxide and/or a non-oxidized lithium-containing compound. The surface ofthe lithium-lanthanum-zirconium oxide-based solid electrolyte is coated with the lithium-containing compound, so that a contact layer between the LLZO and a metal lithium interface is a pure ion conductor, electrons can be prevented from being transmitted to the surface of the LLZO, metal lithium is prevented from being separated out on the surface of the LLZO, and the growth of the dendrites towards the inside of a volume phase of the LLZO is inhibited. In addition, the coating layer can react with the metal lithium to generate an interface fusion intermediate layer for enhancing the ion transport capacity; and the interface fusion intermediate layer is an ideal interface of the metal lithium and the LLZO, so that the cycling stability of the battery can be improved.
Owner:济宁克莱泰格新能源科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products