108results about How to "Prevent degradation" patented technology

Biological image acquisition device

This object aims to disclose a biological multi-directional observation device with measures to avoid an illumination backlight problem taken. In a preferable embodiment of the multi-directional observation device, a two-dimensional detector (6) is arranged right above a transparent specimen support (2) and a main image forming lens (8) is arranged right under the two-dimensional detector (6). A fluorescence-side filter (10) which allows only a fluorescence component from a biological specimen (4) pass therethrough is arranged, if necessary, between the main image forming lens (8) and the biological specimen (4). Reflection mirrors (M1, M2) are arranged on the down side of the specimen support (2), wherein the reflection mirrors are optional systems for leading a light of an image of the rear side of the biological specimen (4) to the main image forming lens (8). A light source device is provided to irradiate light to biological specimen (4). A light source in the light source device is set at a position that is not in direct and indirect viewing fields (16, 18) of the two-dimensional detector, so that the backlight problem is avoided and a vivid biological multi-directional observation image by the two-dimensional observation image by the two-dimensional detector can be acquired.

Capacitance-free dynamic random access memory structure and preparation method thereof

ActiveCN102376715AIncrease electrical thicknessPrevent degradationTransistorSemiconductor/solid-state device manufacturingElectric fieldImpact ionization
The invention discloses a capacitance-free dynamic random access memory structure and a preparation method thereof. Under the premise that the capacitance-free dynamic random access memory structure meets high voltage leakage requirements for a high impact ionization rate, the electrical thickness of a gate medium in a source drain junction area is increased via adoption of different gate medium materials or gate medium thicknesses near the area, an electric field in the vertical direction is reduced effectively. Meanwhile, a thin oxidation layer or a high K material is adopted in the central area of a channel, the gate control capability is improved, and the short channel effect is inhibited. By adopting the structure, the degradation of the gate medium can be inhibited effectively, the reliability (durability) of a storage unit can be improved, the scaling-down of a device can be facilitated, and the complex process for the capacitance structure in the conventional 1T1C structure can be avoided completely in the capacitance-free structure. The adopted manufacturing process is completely compatible with the conventional logic process, and the high-density three-dimensional process integration can also be facilitated.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products