Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

42484results about How to "Improve thermal stability" patented technology

Luminescent body and optical device including the same

A luminous body of prolonged fluorescence lifetime characterized by comprising not only an activator but also at least one coactivator selected from the group consisting of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Sn, Sb and analogues thereof as a further luminescent center for enhancing the thermostability of luminous body. This luminous body excels in thermostability and fluorescence lifetime, so that it is useful as a luminous body for LED.
Owner:TOYODA GOSEI CO LTD +2

Magnetic element with improved out-of-plane anisotropy for spintronic applications

ActiveUS20120205758A1Without degrading thermal stability and MR ratioEnhanced interfacial perpendicular anisotropyMagnetic-field-controlled resistorsGalvano-magnetic material selectionPerpendicular anisotropyAlloy
A magnetic element is disclosed wherein first and second interfaces of a free layer with a Hk enhancing layer and tunnel barrier, respectively, produce enhanced surface perpendicular anisotropy to lower switching current or increase thermal stability in a magnetic tunnel junction (MTJ). In a MTJ with a bottom spin valve configuration where the Hk enhancing layer is an oxide, the capping layer contacting the Hk enhancing layer is selected to have a free energy of oxide formation substantially greater than that of the oxide. The free layer may be a single layer or composite comprised of an Fe rich alloy such as Co20Fe60B20. With a thin free layer, the interfacial perpendicular anisotropy may dominate the shape anisotropy to generate a magnetization perpendicular to the planes of the layers. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.
Owner:TAIWAN SEMICON MFG CO LTD

Thermally conductive thermoplastic

This invention relates to a thermally conductive moldable polymer blend comprising a thermoplastic polymer having a tensile at yield of at least 10,000 psi; at least 60% by weight of a mixture of boron nitride powders having an average particle size of at least 50 microns; and a coupling agent. The composition displays a thermal conductivity of at least about 15 W / m DEG K and it is capable of being molded using high speed molding techniques such as injection molding.
Owner:FERRO CORP

Magnetoresistive element, magnetic head, magnetic memory and magnetic recording apparatus using the same

A magnetoresistive element includes a multilayer film configuration including: a tunnel insulation layer; and a pair of magnetic layers that are laminated with the tunnel insulation layer interposed therebetween. A resistance value of the magnetoresistive element varies with a relative angle between magnetic orientations of both of the magnetic layers, and at least one of the magnetic layers includes a magnetic film having a thermal expansion coefficient not greater than a value obtained by adding 2×10−6 / K to a thermal expansion coefficient of the tunnel insulation layer. The thus configured magnetoresistive element can exert excellent thermal stability. The use of such a magnetoresistive element can realize a magnetic head, a magnetic memory element and a magnetic recording apparatus with excellent thermal stability.
Owner:PANASONIC CORP

MTJ incorporating CoFe/Ni multilayer film with perpendicular magnetic anisotropy for MRAM application

ActiveUS20110096443A1Minimize impinging ion energyMaximize PMA propertyMagnetic measurementsVacuum evaporation coatingSpin transferSpin valve
A MTJ for a spintronic device is disclosed and includes a thin composite seed layer made of at least Ta and a metal layer having fcc(111) or hcp(001) texture as in Ta / Ti / Cu to enhance perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (CoFe / Ni)X, (Co / NiFe)X, (Co / NiCo)X, (CoFe / NiFe)X, or (CoFe / NiCo)X composition where x is from 5 to 30. In one embodiment, a CPP-TMR spin valve has one or both of a laminated free layer and laminated reference layer with the aforementioned compositions. The MTJ includes an interfacial layer made of CoFeB, CoFeB / CoFe, or CoFe / CoFeB between each laminated structure and the tunnel barrier. The laminated layers are deposited by a low power and high Ar pressure process to avoid damaging interfaces between adjoining layers. Annealing occurs at 220° C. to 400° C. A laminated layer with high PMA may also be included in one or more layers of a spin transfer oscillator.
Owner:TAIWAN SEMICON MFG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products