Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

977 results about "Write current" patented technology

Method and system for providing current balanced writing for memory cells and magnetic devices

A method and system for providing a magnetic memory is included. The method and system include providing at least one magnetic storage cell and at least one dummy resistor coupled with the at least one magnetic storage cell at least for a write operation of the at least one magnetic storage cell. Each of the at least one magnetic storage cell includes a magnetic element and a selection device coupled with the magnetic element. The magnetic element being programmed by a first write current driven through the magnetic element in a first direction and a second write current driven through the magnetic element in a second direction. The selection device is configured to be coupled between the magnetic element and the at least one dummy resistor.
Owner:SAMSUNG SEMICON

Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element

InactiveUS6847547B2Total current dropHigh readout signalDigital storageRotary valveSpins
A method and system for providing a magnetic element and a corresponding memory are disclosed. In one aspect, the method and system include providing a dual spin tunnel / valve structure and at least one spin valve. The dual spin tunnel / valve structure includes a nonmagnetic spacer layer between a pinned layer and a free layer, another pinned layer and a barrier layer between the free layer and the other pinned layer. The free layers of the dual spin tunnel / valve structure and the spin valve are magnetostatically coupled. In one embodiment a separation layer resides between the dual spin tunnel / valve structure and the spin valve. In another aspect, the method and system include providing two dual spin valves, a spin tunneling junction there between and, in one embodiment, the separation layer. In both aspects, the magnetic element is configured to write to the free layers using spin transfer when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements

A method and system for providing and utilizing a magnetic memory are described. The magnetic memory includes a plurality of magnetic storage cells. Each magnetic storage cell includes magnetic element(s) programmable due to spin transfer when a write current is passed through the magnetic element(s) and selection device(s). The method and system include driving a first current in proximity to but not through the magnetic element(s) of a portion of the magnetic storage cells. The first current generates a magnetic field. The method and system also include driving a second current through the magnetic element(s) of the portion of the magnetic storage cells. The first and second currents are preferably both driven through bit line(s) coupled with the magnetic element(s). The first and second currents are turned on at a start time. The second current and the magnetic field are sufficient to program the magnetic element(s).
Owner:RENESAS ELECTRONICS CORP +1

Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element

InactiveUS6888742B1Enhanced output signalWriting time becomes shortDigital storageMagnetic memorySpin transfer
A method and system for providing a magnetic element capable of being written in a reduced time using the spin-transfer effect while generating a high output signal and a magnetic memory using the magnetic element are disclosed. The magnetic element includes a ferromagnetic pinned layer, a nonmagnetic intermediate layer, and a ferromagnetic free layer. The pinned layer has a magnetization pinned in a first direction. The nonmagnetic intermediate layer resides between the pinned layer and the free layer. The free layer has a magnetization with an easy axis in a second direction. The first direction is in the same plane as the second direction and is oriented at an angle with respect to the second direction. This angle is different from zero and π radians. The magnetic element is also configured to allow the magnetization of the free layer to change direction due to spin transfer when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element

A magnetic element that can be used in a memory array having high density includes a pinned layer, a half-metallic material layer, a spacer (or a barrier) layer and a free layer. The half-metallic material layer is formed on the pinned layer and preferably has a thickness that is less than about 100 Å. The half-metallic material layer can be formed to be a continuous layer or a discontinuous on the pinned layer. The spacer (or barrier) layer is formed on the half-metallic material layer, such that the spacer (or barrier) layer is nonmagnetic and conductive (or insulating). The free layer is formed on the spacer (or barrier) layer and has a second magnetization that changes direction based on the spin-transfer effect when a write current passes through the magnetic element.
Owner:SAMSUNG SEMICON

Spin-transfer multilayer stack containing magnetic layers with resettable magnetization

A magnetic element for a high-density memory array includes a resettable layer and a storage layer. The resettable layer has a magnetization that is set in a selected direction by at least one externally generated magnetic field. The storage layer has at least one magnetic easy axis and a magnetization that changes direction based on the spin-transfer effect when a write current passes through the magnetic element. An alternative embodiment of the magnetic element includes an additional multilayer structure formed from a tunneling barrier layer, a pinned magnetic layer and an antiferromagnetic layer that pins the magnetization of the pinned layer in a predetermined direction. Another alternative embodiment of the magnetic element includes an additional multilayer structure that is formed from a tunneling barrier layer and a second resettable layer having a magnetic moment that is different from the magnetic moment of the resettable layer of the basic embodiment.
Owner:SAMSUNG SEMICON

Magnetoresistive element

A magnetoresistive element which records information by supplying spin-polarized electrons to a magnetic material, includes a first pinned layer which is made of a magnetic material and has a first magnetization directed in a direction perpendicular to a film surface, a free layer which is made of a magnetic material and has a second magnetization directed in the direction perpendicular to the film surface, the direction of the second magnetization reversing by the spin-polarized electrons, and a first nonmagnetic layer which is provided between the first pinned layer and the free layer. A saturation magnetization Ms of the free layer satisfies a relationship 0≧Ms<√{square root over ( )}{Jw / (6nAt)}. Jw is a write current density, t is a thickness of the free layer, A is a constant.
Owner:KIOXIA CORP

Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors

A magnetic memory cell and a magnetic memory incorporating the cell are described. The magnetic memory cell includes at least one magnetic element and at least one non-planar selection device. The magnetic element(s) are programmable using write current(s) driven through the magnetic element. The magnetic memory may include a plurality of magnetic storage cells, a plurality of bit lines corresponding to the plurality of magnetic storage cells, and a plurality of source lines corresponding to the plurality of magnetic storage cells.
Owner:SAMSUNG SEMICON

Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells

A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells. Each of the plurality of magnetic storage cells includes a magnetic element and a selection transistor. The magnetic element may be programmed using spin transfer induced switching by a write current driven through the magnetic element. The selection transistor includes a source and a drain. The plurality of magnetic storage cells are grouped in pairs. The source of the selection transistor for one magnetic storage cell of a pair shares the source with the selection transistor for another magnetic storage cell of the pair.
Owner:SAMSUNG SEMICON

Spin transfer magnetic element having low saturation magnetization free layers

A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The magnetic element may also include a barrier layer, a second pinned layer. Alternatively, second pinned and second spacer layers and a second free layer magnetostatically coupled to the free layer are included. In one aspect, the free layer(s) include ferromagnetic material(s) diluted with nonmagnetic material(s) and / or ferrimagnetically doped to provide low saturation magnetization(s).
Owner:SAMSUNG SEMICON

Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells

A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells. Each of the plurality of magnetic storage cells includes at least one magnetic element and a plurality of selection transistors. The at least one magnetic element is capable of being programmed using spin transfer induced switching by a write current driven through the at least one magnetic element. The at least one selection transistor is configured to allow the magnetic element to be alternately selected for writing and reading. Architectures for reading and writing to the magnetic storage cells are also described.
Owner:SAMSUNG SEMICON

Spin transfer magnetic element having low saturation magnetization free layers

A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The magnetic element may also include a barrier layer, a second pinned layer. Alternatively, second pinned and second spacer layers and a second free layer magnetostatically coupled to the free layer are included. In one aspect, the free layer(s) include ferromagnetic material(s) diluted with nonmagnetic material(s) and / or ferrimagnetically doped to provide low saturation magnetization(s).
Owner:SAMSUNG SEMICON

Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same

ActiveUS7088609B2Reduce outer surfaceHigh areal resistanceNanomagnetismMagnetic-field-controlled resistorsDamping constantMagnetic memory
A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, spacer, free, and spin barrier layers. The spacer layer is nonmagnetic and resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The free layer resides between the spacer layer and the spin barrier layer. The spin barrier layer is configured to reduce an outer surface contribution to a damping constant of the free layer. In one aspect, the spin barrier layer has a high areal resistance and may substantially eliminate spin pumping induced damping. In another aspect, the magnetic element also includes a spin accumulation layer between the spin barrier and free layers. The spin accumulation layer has a high conductivity, preferably being metallic, and may have a long spin diffusion length.
Owner:SAMSUNG SEMICON

Method and system for providing spin transfer tunneling magnetic memories utilizing unidirectional polarity selection devices

A magnetic memory cell and a magnetic memory incorporating the cell are described. The magnetic memory cell includes at least one magnetic element and a plurality of unidirectional polarity selection devices. The magnetic element(s) are programmable using write current(s) driven through the magnetic element. The unidirectional polarity selection devices are connected in parallel and such that they have opposing polarities. The magnetic memory may include a plurality of magnetic storage cells, a plurality of bit lines corresponding to the plurality of magnetic storage cells, and a plurality of source lines corresponding to the plurality of magnetic storage cells.
Owner:GRANDIS

Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled

A method and system for providing a magnetic element and memory utilizing the magnetic element are described. The magnetic element includes a reference layer, a nonferromagnetic spacer layer, and a free layer. The reference layer has a resettable magnetization that is set in a selected direction by a magnetic field generated externally to the reference layer. The reference layer is also magnetically thermally unstable at an operating temperature range and has KuV / kBT is less than fifty five. The spacer layer resides between the reference layer and the free layer. In addition, the magnetic element is configured to allow the free layer to be switched to each of a plurality of states when a write current is passed through the magnetic element.
Owner:RENESAS ELECTRONICS CORP +1

Magnetic element utilizing spin transfer and an MRAM device using the magnetic element

A method and system for providing a magnetic element capable of being written using spin-transfer effect while generating a high output signal and a magnetic memory using the magnetic element are disclosed. The magnetic element includes a first ferromagnetic pinned layer, a nonmagnetic spacer layer, a ferromagnetic free layer, an insulating barrier layer and a second ferromagnetic pinned layer. The pinned layer has a magnetization pinned in a first direction. The nonmagnetic spacer layer is conductive and is between the first pinned layer and the free layer. The barrier layer resides between the free layer and the second pinned layer and is an insulator having a thickness allowing electron tunneling through the barrier layer. The second pinned layer has a magnetization pinned in a second direction. The magnetic element is configured to allow the magnetization of the free layer to change direction due to spin transfer when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Fast magnetic memory devices utilizing spin transfer and magnetic elements used therein

A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells, a plurality of word lines, and a plurality of bit lines. Each of the plurality of magnetic storage cells includes a plurality of magnetic elements and at least one selection transistor. Each of the plurality of magnetic elements is capable of being programmed using spin transfer induced switching by a write current driven through the magnetic element. Each of the plurality of magnetic elements has a first end and a second end. The at least one selection transistor is coupled to the first end of each of the plurality of magnetic elements. The plurality of word lines is coupled with the plurality of selection transistors and selectively enables a portion of the plurality of selection transistors.
Owner:SAMSUNG SEMICON

MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements

A method and system for providing a magnetic element are disclosed. The method and system include providing first and second pinned layers, a free layer, and first and second barrier layers between the first and second pinned layers, respectively, and the free layer. The first barrier layer is preferably crystalline MgO, which is insulating, and configured to allow tunneling through the first barrier layer. Furthermore, the first barrier layer has an interface with another layer, such as the free layer or the first pinned layer. The interface has a structure that provides a high spin polarization of at least fifty percent and preferably over eighty percent. The second barrier layer is insulating and configured to allow tunneling through the second barrier layer. The magnetic element is configured to allow the free layer to be switched due to spin transfer when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products