Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

6866results about How to "Total current drop" patented technology

Semiconductor device and method for manufacturing the same

A semiconductor device 100 is provided with a multiplex through plug 111 that fills an opening extending through the silicon substrate 101. The multiplex through plugs 111 comprises a column-shaped and solid first through electrode 103, a first insulating film 105 that covers the cylindrical face of the first through electrode 103, a second through electrode 107 that covers the cylindrical face of the first insulating film 105 and a second insulating film 109 that covers the cylindrical face of the second through electrode 107, and these have a common central axis. The upper cross sections of the first insulating film 105, the second through electrode 107 and the second insulating film 109 are annular-shaped.

Semiconductor device

InactiveUS20110089417A1Excellent switching characteristicExcellent semiconductor device can be madeSolid-state devicesSemiconductor/solid-state device manufacturingOxide semiconductorOxide
An objet of the present invention is to provide a semiconductor device with a new structure. Disclosed is a semiconductor device including a first transistor which includes a channel formation region on a substrate containing a semiconductor material, impurity regions formed with the channel formation region interposed therebetween, a first gate insulating layer over the channel formation region, a first gate electrode over the first gate insulating layer, and a first source electrode and a first drain electrode which are electrically connected to the impurity region; and a second transistor which includes a second gate electrode over the substrate containing a semiconductor material, a second gate insulating layer over the second gate electrode, an oxide semiconductor layer over the second gate insulating layer, and a second source electrode and a second drain electrode which are electrically connected to the oxide semiconductor layer.

Telemetry duty cycle management system for an implantable medical device

A telemetry system enabling radio frequency (RF) communications between an implantable medical device and an external device, or programmer, in which the RF circuitry is normally maintained in a powered down state in order to conserve power. At synchronized wakeup intervals, one of the devices designated as a master device powers up its RF transmitter to request a communications session, and the other device designated as a slave device powers up its RF transmitter to listen for the request. Telemetry is conducted using a far field or near field communication link.

Vertical Side Wall Active Pin Structures in a Phase Change Memory and Manufacturing Methods

A programmable resistor memory, such as a phase change memory, with a memory element comprising narrow vertical side wall active pins is described. The side wall active pins comprise a programmable resistive material, such as a phase change material. In a first aspect of the invention, a method of forming a memory cell is described which comprises forming a stack comprising a first electrode having a principal surface with a perimeter, an insulating layer overlying a portion of the principal surface of the first electrode, and a second electrode vertically separated from the first electrode and overlying the insulating layer. Side walls on the insulating layer and on the second electrode are positioned over the principle surface of the first electrode with a lateral offset from the perimeter of the first electrode.

Germanium FinFETs Having Dielectric Punch-Through Stoppers

A method of forming a semiconductor structure includes providing a composite substrate, which includes a bulk silicon substrate and a silicon germanium (SiGe) layer over and adjoining the bulk silicon substrate. A first condensation is performed to the SiGe layer to form a condensed SiGe layer, so that the condensed SiGe layer has a substantially uniform germanium concentration. The condensed SiGe layer and a top portion of the bulk silicon substrate are etched to form a composite fin including a silicon fin and a condensed SiGe fin over the silicon fine. The method further includes oxidizing a portion of the silicon fin; and performing a second condensation to the condensed SiGe fin.

Dual-polarized optically controlled microwave antenna

An optically controlled microwave antenna that reduces the optical power consumed by the antenna and to enable polarimetric detection an optically controlled microwave antenna comprises an antenna array and a feed for illuminating said antenna array with and / or receiving microwave radiation. The antenna array comprises a plurality of antenna elements each including a waveguide, two optically controllable semiconductor elements arranged within the waveguide in front of the light transmissive portion of the second end portion, a controllable light source arranged at or close to the light transmissive portion of the second end portion for projecting a controlled light beam onto said semiconductor element for controlling its material properties, and a septum arranged within the waveguide in front of the light transmissive portion of the second end portion and separating said waveguide into two waveguide portions.

Semiconductor integrated circuit device and method of manufacturing the same

Disclosed herein is a phase change memory semiconductor integrated circuit device using a chalcogenide film that solves a problem that the operation temperature capable of ensuring long time memory retention is low due to low phase change temperature is and, at the same time, a problem that power consumption of the device is high since a large current requires to rewrite memory information due to low resistance. A portion of constituent elements for a chalcogenide comprises nitride, oxide or carbide which are formed to the boundary between the chalcogenide film and a metal plug as an underlying electrode and to the grain boundary of chalcogenide crystals thereby increasing the phase change temperature and high Joule heat can be generated even by a small current by increasing the resistance of the film.

Organic light emitting diode display and method of driving the same

ActiveUS20090213046A1Increase qualityMinimize deterioration of threshold voltageElectrical apparatusStatic indicating devicesData linesVoltage source
An organic light emitting diode display includes a data line, a gate line that crosses the data line to receive a scan pulse, a high potential driving voltage source to generate a high potential driving voltage, a low potential driving voltage source to generate a low potential driving voltage, a light emitting element to emit light due to a current flowing between the high potential driving voltage source and the low potential driving voltage source, a drive element connected between the high potential driving voltage source and the light emitting element to control a current flowing in the light emitting element depending on a voltage between a gate electrode and a source electrode of the drive element, and a driving current stabilization circuit to apply a first voltage to the gate electrode of the drive element to turn on the drive element and to sink a reference current through the drive element to set a source voltage of the drive element at a sensing voltage and to modify the voltage between the gate and source electrodes of the drive element to scale a current to be applied to the light emitting element from the reference current.

Modular rearview mirror assembly

An interior rearview mirror assembly for vehicles incorporates a reflective mirror element for viewing by a user of the mirror assembly, a lip formed from moldable polymeric resin selected to expand sufficiently when heated to allow snap in insertion of the reflective mirror element while the lip is warm and flexable, a carrier located to the rear of the reflective element such that the carrier is closer to a windshield of the vehicle than the mirror element when the mirror element is mounted in the vehicle, at least one electrical accessory, and an electrical connector adapted to receive a connector from the vehicle electrical system with the electrical accessory connected to the electrical connector. Preferably, the electrical accessory is supported by the carrier and is selected from a variety of electrical devices, lamps, lights, sensors and the like.

Thin film write head with improved laminated flux carrying structure and method of fabrication

The present invention provides a thin film write head having an improved laminated flux carrying structure and method of fabrication. The preferred embodiment provides laminated layers of: high moment magnetic material, and easily aligned high resistivity magnetic material. In the preferred embodiment, the easily aligned laminating layer induces uniaxial anisotropy, by exchange coupling, to improve uniaxial anisotropy in the high moment material. This allows deposition induced uniaxial anisotropy by DC magnetron sputtering and also provides improved post deposition annealing, if desired. It is preferred to laminate FeXN, such as FeRhN, or other crystalline structure material, with an amorphous alloy material, preferably Co based, such as CoZrCr. In the preferred embodiment, upper and lower pole structures may both be laminated as discussed above. Such laminated structures have higher Bs than structures with insulative laminates, and yokes and pole tips and may be integrally formed, if desired, because flux may travel along or across the laminating layers. The preferred embodiment of the present invention improves soft magnetic properties, reduces eddy currents, improves hard axis alignment while not deleteriously affecting the coercivity, permeability, and magnetostriction of the structure, thus allowing for improved high frequency operation.

Methods for maskless lithography

General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.

Battery pack

A cordless power tool system is provided which is driven by using a battery pack as a power source, and which has work performance equivalent to an AC power tool is driven by using a commercial power source as a power source. The cordless power tool system is configured to include: a battery pack in which DC voltage of battery modules is converted into AC voltage, to thereby output the AC voltage having a level which is comparable to that of the commercial power source; a cordless power tool which is driven by using the battery pack as a power source; an electrical cord adapter which allows power supply from the commercial power source to the battery pack for charging the battery pack; and an electrical cord adapter which allows power supply from the commercial power source to the cordless power tool for driving the cordless power tool.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products