Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

57219results about How to "Increased durability" patented technology

Non-cylindrical prosthetic valve system for transluminal delivery

InactiveUS20070043435A1Preventing substantial migrationEliminate the problemBalloon catheterHeart valvesCoronary arteriesProsthesis
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable prosthesis frame. If desired, one or more expandable anchors may be used. The prosthesis frame, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. Portions of the prosthesis frame may expand to a preset diameter to maintain coaptivity of the replacement valve and to prevent occlusion of the coronary ostia. The prosthesis frame is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. When the outer sheath is retracted, the prosthesis frame expands to an expanded position such that the valve and prosthesis frame expand at the implantation site and the anchor engages the lumen wall. The prosthesis frame has a non-cylindrical configuration with a preset maximum expansion diameter region about the valve opening to maintain the preferred valve geometry. The prosthesis frame may also have other regions having a preset maximum expansion diameter to avoid blockage of adjacent structures such as the coronary ostia.
Owner:MEDTRONIC COREVALVE

Bioabsorbable Polymer, Bioabsorbable Composite Stents

Biocompatible materials may be configured into any number of implantable medical devices including intraluminal stents. The biocompatible material may comprise metallic and non-metallic materials in hybrid structures. In one such structure, a device may be fabricated with one or more elements having an inner metallic core that is biodegradable with an outer shell formed from a polymeric material that is biodegradable. Additionally, therapeutic agents may be incorporated into the microstructure or the bulk material.
Owner:CORDIS CORP

Electroluminescent (EL) devices

The triazinewherein Ar1, Ar2, Ar3, and Ar4 are each independently an aryl; R1 and R2 are substituents selected from the group consisting of hydrogen, an alkyl, an aryl, an alkoxy, a halogen atom, and a cyano; R3 and R4 are each a divalent group L selected from the group consisting of -C(R'R'')-, alkylene, an oxygen atom, a sulfur atom, and -Si(R'R'')-, wherein R' and R'' are selected from the group consisting of hydrogen, alkyl, alkoxy, and aryl.
Owner:LG DISPLAY CO LTD

Medical device applications of nanostructured surfaces

InactiveUS20050038498A1Fine surfacePrevent/reduce bio-foulingAntibacterial agentsMaterial nanotechnologyFiberNanofiber
This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices.
Owner:NANOSYS INC

Heart valve

A heart valve includes a valve body made of a flexible material such as pericardium. The valve body is made of two layers of material, an outer layer, and an inner layer that defines a plurality of leaflets. The leaflets of the inner layer are attached to the outer layer. In some embodiments the valve body is made by cutting a single piece of flat source tissue, folding the cut tissue and forming it into a tubular pattern having the inner and outer layers. The multi-layer valve body can be mounted on a stent for delivery within a patient's heart.
Owner:EDWARDS LIFESCI CARDIAQ

Collapsible Heart Valve with Polymer Leaflets

A Catheter Based Heart Valve (CBHV) is described herein which replaces a non functional, natural heart valve. The CBHV significantly reduces the invasiveness of the implantation procedure by being inserted with a catheter as opposed to open heart surgery. Additionally, the CBHV is coated with a biocompatible material to reduce the thrombogenic effects and to increase durability of the CBHV. The CBHV includes a stent and two or more polymer leaflets sewn to the stent. The stent is a wire assembly coated with Polystyrene-Polyisobutylene-Polystyrene (SIBS). The leaflets are made from a polyester weave as a core material and are coated with SIBS before being sewn to the stent. Other biocompatible materials may be used, such as stainless steel, Titanium, Nickel-Titanium alloys, etc.
Owner:FLORIDA INTERNATIONAL UNIVERSITY

Method and apparatus for flexible fixation of a spine

A flexible spinal fixation device having a flexible metallic connection unit for non-rigid stabilization of the spinal column. In one embodiment, the fixation device includes at least two securing members configured to be inserted into respective adjacent spinal pedicles, each securing member each including a coupling assembly. The fixation device further includes a flexible metal connection unit configured to be received and secured within the coupling assemblies of each securing member so as to flexibly stabilize the affected area of the spine.
Owner:N SPINE INC

Component for semicondutor processing apparatus and manufacturing method thereof

A component (10) for a semiconductor processing apparatus includes a matrix (10a) defining a shape of the component, and a protection film (10c) covering a predetermined surface of the matrix. The protection film (10c) consists essentially of an amorphous oxide of a first element selected from the group consisting of aluminum, silicon, hafnium, zirconium, and yttrium. The protection film (10c) has a porosity of less than 1% and a thickness of 1 nm to 10 μm.
Owner:TOKYO ELECTRON LTD

Marking and guidance method and system for flexible fixation of a spine

A method and system for marking and guiding the insertion of securing members (e.g., pedicle screws) of a spinal fixation device. In one embodiment, the marking and guidance method and system includes the use of a guide tube configured to be inserted into a patient's back until a first end reaches an entry point on or near a vertebral bone of the patient's spinal column, wherein the guide tube includes a hollow cylindrical channel along its longitudinal center axis; a penetrating device configured to be positioned within the cylindrical channel of the guide tube and having a sharp tip configured to protrude outwardly from the first end of the guide tube so as to allow the first end of the guide tube to penetrate through the patient's back muscle and tissue and reach the vertebral bone at the entry point; a marking pin configured to be inserted through the cylindrical channel of the guide tube, after removal of the penetrating device, until a first end of the marking pin having a sharp tip reaches the entry point; and a pushing device configured to be inserted through the cylindrical channel of the guide tube and provide a driving force at a second end of the marking pin, opposite the first end, so as to drive and secure the first end of the marking pin into the vertebral bone, wherein the marking pin identifies the location of the entry point on the vertebral bone for subsequent implantation of a securing member of a spinal fixation device.
Owner:N SPINE INC

Composite interconnection element for microelectronic components, and method of making same

Interconnection elements for electronic components, exhibiting desirable mechanical characteristics (such as resiliency, for making pressure contacts) are formed by shaping an elongate element (core) of a soft material (such as gold) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped elongate element with a hard material (such as nickel and its alloys), to impart a desired spring (resilient) characteristic to the resulting composite interconnection element. A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and / or solderability) may be applied to the composite interconnection element. The elongate element may be formed from a wire, or from a sheet (e.g., metal foil). The resulting interconnection elements may be mounted to a variety of electronic components, including directly to semiconductor dies and wafers (in which case the overcoat material anchors the composite interconnection element to a terminal (or the like) on the electronic component), may be mounted to support substrates for use as interposers and may be mounted to substrates for use as probe cards or probe card inserts. In one embodiment, a hybrid composite interconnection element is formed by mounting a core to an end of an flat elongate element formed from a sheet, and overcoating at least the core, the flat elongate element providing a "floating" support for the overcoated core, capable of absorbing non-planarities (tolerances) of an electronic component. Methods of fabricating interconnection elements on sacrificial substrates are described. Methods of fabricating tip structures and contact tips at the end of interconnection elements are described.
Owner:FORMFACTOR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products