Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

700 results about "Non functional" patented technology

Artificial spinal joints and method of use

An artificial spinal joint, consisting of a flexible or rigid member or a pair of moveably-joined, flexible or rigid segments, is formed into a spring-like shape, whose distal ends have feet with slots through which screws can be inserted to attach the artificial joint to vertebra whose facets (joints) are non-functional. The artificial spinal joint is able to prevent subluxation of the spine, while retaining the mobility of the spine and permitting angular deflection of the vertebra above and below a non-functional spinal joint. A jig is used to position tools and make passageways for screws to attach the artificial spinal joint to the vertebra or its pedicles or facets in a minimally invasive procedure. The rigid members or segments are bio-compatible and may be made of titanium, a titanium alloy, tantalum, medical grade stainless steel or carbon fibers in a matrix of a rigid, durable plastic. The flexible members or segments may be made of spring steel coated with a durable, bio-compatible material, small diameter carbon fibers in a flexible, durable plastic matrix, or a single shape or dual shape, superelastic memory metal. The feet, made of any of the rigid or flexible materials described above, may also be moveably attached to the proximal ends of the members or segments. Having the feet moveably attached to the segments facilitates insertion of the artificial spinal joint into the body by folding the feet parallel to the axis of the segments during insertion, and then unfolding the feet for attachment to the vertebra or its pedicles or facets. The artificial spinal joint may be inserted and attached to vertebra whose facets are non-functional in minimally invasive, moderately invasive or conventional surgical procedures.
Owner:TRIMEDYNE

Fail-over control in a computer system having redundant service processors

A system and method for determining an active service processor from two or more redundant service processors in the system. The system typically includes two management modules and at least one managed subsystem such as a server blade. Each management module includes a service processor and control logic. The control logic is configured to receive various status signals from the service processor and to generate a control signal based thereon. The control signal is provided, via an interconnect plane, to determination logic on each managed subsystem. The determination logic receives a control signal from each management module and generates a switch signal based on the state of the control signals. The switch signal controls switching logic configured to receive bus signals from the service processors on each management module. Based on the control signal, one of the service processor bus signals is provided to managed instrumentation on the managed subsystem. The management module control logic is generally configured to maintain the control signal in its current state if the active processor is determined to be functional. The control logic is further configured to alter the control signal state if the active service processor is determined to be non-functional. A transition in the control signal typically generates a fail-over event that causes the switching logic on the managed subsystems to switch from the previously active service processor to the previously inactive or standby service processor as the source of service processor signals.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products