Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

648 results about "Precipitated silica" patented technology

Precipitated silica is an amorphous form of silica (silicon dioxide, SiO₂); it is a white, powdery material. Precipitated silica is produced by precipitation from a solution containing silicate salts.

Tire with low hydrocarbon emission rubber combination of tread and sidewall components with compositional limitations

The invention relates to a tire of a structural combination of tire tread and sidewall components with compositional limitations containing minimal, if any, of in situ formed alcohol and methyl isobutyl ketone byproducts. The tread component rubber composition contains pre-hydrophobated silica reinforcement. The sidewall component contains low unsaturation EPDM or brominated copolymer of isobutylene and p-methylstyrene and may contain pre-hydrophobated silica reinforcement. The silica reinforcement for said tread and sidewall components is a pre-hydrophobated precipitated silica. The pre-hydrophobated silica is prepared, prior to mixing with the elastomer(s), by reacting hydroxyl groups (e.g. silanol groups) contained on the surface of a precipitated silica with an alkoxyorganomercaptosilane or a combination of an alkoxyorganomercaptosilane and a substituted alkylsilane or with a bis-3(trialkoxysilylalkyl) polysulfide which contains an average of from 2 to 4 connecting sulfur atoms in its polysulfidic bridge to form a composite thereof. The alcohol byproduct therefrom is removed from the composite prior to its introduction into the rubber composition(s). In another aspect of the invention, the connecting sidewall rubber composition, and optionally the tread composition is free of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine antidegradant (referred herein to as 6PPD) in order to prevent in situ formation of methyl isobutyl ketone byproduct from the reaction of 6PPD with atmospheric oxygen and / or ozone.
Owner:THE GOODYEAR TIRE & RUBBER CO

Tire with rubber tread composed of a primary and at least one lateral tread portion containing a dispersion of short carbon fibers

ActiveUS20070221303A1Easy to handleIncreasing low strain stiffnessSpecial tyresPneumatic tyre reinforcementsFiberCarbon fibers
The invention relates to a tire having a circumferential rubber tread of a cap/base construction composed of a cap rubber layer as the tire running surface and an internal base rubber layer underlying said tread cap layer. The said tread cap layer is composed of a primary tread cap portion and one or two lateral tread cap portions of rubber compositions containing precipitated silica and/or rubber reinforcing carbon black reinforcement and wherein the rubber composition of at least one of said lateral tread cap portions contains a dispersion of short carbon fibers. Said primary tread cap portion contains a major portion of the running surface of the tread and is comprised of a silica-rich or carbon black-rich, preferably silica-rich, reinforcement-containing rubber composition, and said lateral tread portion(s) contains a minor portion of the running surface of the tread and is comprised of a silica-rich or carbon black-rich, preferably carbon black-rich, reinforcement-containing rubber composition. Where said primary tread cap portion is comprised of a silica-rich rubber composition, said lateral tread cap portion(s) is comprised of a carbon black-rich rubber composition and visa versa. The said tread cap portions are load bearing portions in the sense of extending from the running surface of the tread radially inward to said underlying tread base layer. In one aspect, the portioned rubber tread cap layer and the rubber tread base layer are co-extruded together to form a unitary composite thereof.
Owner:THE GOODYEAR TIRE & RUBBER CO

Method for preparing white carbon black cogeneration nanometer calcium carbonate by integrally utilizing micro silicon powder

The invention relates to a method for preparing white carbon black cogeneration nanometer calcium carbonate by integrally utilizing micro silicon powder, which belongs to the technical field of integrative utilization of silicon iron alloy industrial waste resources and industrial kiln gas carbon dioxide. The method comprises the following process steps that: micro silicon powder is dissolved by sodium hydroxide hot alkali for preparing water glass; lime is prepared through lime stone calcination, and carbon dioxide raw material gas is released; precipitated silica is prepared through water glass carbonization; carbonization filter liquid is subject to sodium carbonate causticization for preparing sodium hydroxide solution to coproduce nanometer calcium carbonate; and the sodium hydroxide solution is circulated to a hot alkali dissolving and boiling kettle for dissolving micro silicon powder to prepare water glass. The method has the advantages that the process circulation of integrally utilizing the micro silicon powder for preparing the white carbon black cogeneration nanometer calcium carbonate is realized, and a new method is provided for goals of changing metallurgy chemical industrial waste materials into resources and utilizing the waste materials at high value.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI +2

High-cleaning/low abrasive silica and materials and dentifrice containing such materials

Unique abrasive and/or thickening materials that are in situ generated compositions of precipitated silicas and silica gels are provided. Such compositions exhibit different beneficial characteristics depending on the structure of the composite in situ generated material. With low structured composites (as measured via linseed oil absorption levels from 40 to 100 ml oil absorbed/100 g composite), simultaneously high pellicle film cleaning properties and moderate dentin abrasion levels are possible in order to accord the user a dentifrice that effectively cleans tooth surfaces without detrimentally abrading such surfaces. Increased amounts of high structure composite materials tend to accord greater viscosity build and thickening benefits together with such desirable abrasion and cleaning properties, albeit to a lesser extent than for the low structure types. Thus, mid-range cleaning materials will exhibit oil absorption levels from an excess of 100 to 150, and high thickening/low abrasion composite exhibit oil absorption properties in excess of 150. Such an in situ, simultaneously produced precipitated silica/silica gel combination provides such unexpectedly effective low abrasion and high cleaning capability and different thickening characteristics as compared to physical mixtures of such components. Encompassed within this invention is a unique method for making such gel/precipitated silica composite materials for such a purpose, as well as the different materials within the structure ranges described above and dentifrices comprising such.
Owner:J M HUBER CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products