Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1703 results about "HYDROSOL" patented technology

HYDROSOL (short for Solar hydrogen via water splitting in advanced monolithic reactors for future solar power plants) is a series of European Union funded projects for the promotion of renewable energy. Its aim is the production of hydrogen using concentrated solar power with a specific thermochemical cycle.

Microcapsule of organic phase change energy storage material and preparation method thereof

ActiveCN101555401AHas infrared reflective propertiesHas infrared absorption propertiesEnergy storageHeat-exchange elementsChemistryIn situ polymerization
The invention discloses a microcapsule of an organic phase change energy storage material and a preparation method thereof. The microcapsule of an organic phase change energy storage material comprises a core and a nucleocapsid, wherein the material of the core comprises the organic phase change energy storage material; the nucleocapsid at least comprises an inner layer and an outer layer, the inner layer is packaged by any one of an in situ polymerization method, an interface polymerization method, a reaction phase separating method, a double agglomeration method and a sol-gal process, and the outer layer is packaged by any one of an in situ polymerization method, a reaction phase separating method, a sol-gal process and a double agglomeration method. The microcapsule has adjustable size, nucleocapsid composition and shell thickness, favorable flexibility, mechanical strength, penetrability resistance and dispersibility and can be widely applied to the fields of energy sources, materials, aero-space, textile, electric power, medical apparatus, architecture, and the like, such as solar utilization, industrial afterheat and waste heat recovery, architecture energy storage, dress with constant temperature, air conditioners for cool and heat accumulation, constant temperature of electric appliances, and the like.
Owner:BEIJING NEW BUILDING MATERIAL

Photocatalyst-carrying structure and photocatalyst coating material

The present invention provides a photocatalyst-carrying structure which has a structure, wherein an adhesive layer is provided in between a photocatalyst layer and a substrate, the adhesive layer is composed of silicon-modified resin, polysiloxane-containing resin or colloidal silica-containing resin, and for forming the photocatalyst layer a composition comprising a metal oxide gel or a metal hydroxide gel and a photocatalyst is used. Further, the present invention also provides a photocatalyst coating agent for producing a photocatalyst-carrying structure which contains silicon compound, at least one metal oxide sol or metal hydroxide sol, and at least one photocatalyst powder or sol.
Owner:NIPPON SODA CO LTD

Preparation method of completely peeled oxidation graphene/ rubber nanometer composite material

A preparation method of completely peeled oxidation graphene / rubber nanometer composite material adopts combination of emulsion compounding and flocculation processes or combination of emulsion compounding and spraying drying processes. The preparation method retains the phase state structure of the oxidation grapheme / rubber composite emulation in the liquid state and obtains the phase-state structure which is highly dispersed, highly peeled and dispersed in nanometer scale dispersion. Simultaneously, substances capable of acting with generating ionic bond effect or chemical bond effect with an oxidation graphene surface functional group are added into the oxidation graphene / hydrosol to serve as an interface agent, thereby improving interface combination effect of oxidation graphene and rubber. Vulcanized rubber prepared by the composite material of the preparation method through follow-up mixing and vulcanizing has mechanical property such as high tensile strength, stretching stress and tearing strength and is capable of greatly improving abrasion resistance and gas separation performance of the vulcanized rubber. The preparation method is simple, easy, low in cost, apt to industrialization and wide in suitable aspect, saves energy and has better economical and social benefits.
Owner:JIANGSU LVYUAN RUBBER RESOURCE RECYCLING INNOVATION CENT CO LTD

Nano-bionic material for tissue repair and preparation method thereof

ActiveCN101829361AImprove regenerative abilityTo achieve the effect of graft repairProsthesisNano-scaffoldTissue repair
The invention provides a nano-bionic material for tissue repair and a preparation method thereof. The nano-bionic material comprises a nano-bionic bracket and hydrosol attached to the nano-bionic bracket, wherein one or more cell factors and / or cells are coated in the hydrosol. The preparation method of the nano-bionic material comprises the following steps of: preparing an electrospinning solution and a hydrosol solution containing the cell factors and / or the cells; preparing the nano-bionic bracket by using the electrospinning; printing the hydrosol solution containing the cell factors and / or the cells on the nano-bionic bracket by using a ink-jet printer; and the like, and repeating the electrospinning and the ink jet to obtain the nano-bionic material with different thicknesses. By combining with an electrospinning technology and a biological printing technology, the invention combines specific medicines and / or the cell factors and / or the cells in the nano-bracket and / or the surface of the nano-bracket, thereby greatly enhancing the effects of the nano-bionic material on tissue repair and tissue regeneration; in addition, the invention has broad application prospect.
Owner:MEDPRIN REGENERATIVE MEDICAL TECH

High-performance thermal insulation material and preparation method thereof

The invention provides a high-performance thermal insulation material and a preparation method thereof. The thermal insulation material comprises silicon dioxide aerogel and a fiber material, wherein, the silicon dioxide aerogel takes silicon dioxide hydrosol as a raw material, and is prepared by adding a catalyst. The method comprises the following steps: sol preparing, sol dipping, gelating, gel ageing, hydrophobization treating and drying and the like. The method can conveniently and selectively prepare the materials of planes, abnormal-shape surfaces and multiple sizes, has simple and convenient operation and small environmental pollution. The material has excellent mechanical performance, good high-temperature stability and heat insulation performance, and has wide application prospect in the fields of civilian industries, space flight and aviation industries, military industries and the like.
Owner:AEROSPACE INST OF ADVANCED MATERIALS & PROCESSING TECH

Nitric oxide-releasing coatings

Provided according to embodiments of the invention are NO-releasing sol-gel coating formed from a sol precursor solution comprising a backbone alkoxysilane and a diazeniumdiolate-modified alkoxysilane. Further provided are methods of producing NO-releasing sol-gel coatings. Such methods may include (a) co-condensing a sol precursor solution comprising a backbone alkoxysilane and a diazeniumdiolate-modified alkoxysilane in a solvent to form a sol; (b) coating a substrate with the sol; and (c) drying the sol to form the NO-releasing sol-gel coating.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL +1

Preparation method for hydrophobic silica aerogel

The present invention discloses a preparation method for hydrophobic silica aerogel with industrial waterglass as a raw material, which comprises the following steps: diluting the industrial waterglass with water; neutralizing with an acid to obtain hydrosol; allowing the hydrosol to stand and age for 8-48 hours at normal temperature so as to form hydrogel; replacing the water in the hydrogel with anhydrous ethanol; allowing the hydrogel to react with organosilane compounds; performing surface modification and simultaneous solvent exchange with n-hexane; suction-filtering; washing; allowing to stand at normal temperature to obtain white hydrophobic silica aerogel powder. The preparation method has simple process and low cost, and the prepared aerogel has porous network-like structure which features a low density and a high specific surface area.
Owner:SHENZHEN UNIV

Drug delivery materials made by sol/gel technology

The present invention relates to a method of producing a drug delivery material by encapsulating a biologically or therapeutically active agent in a shell, combining the encapsulated agent with a sol, and converting the combination into a solid or semi-solid drug delivery material. The present invention further relates to drug delivery materials produced by this exemplary method, and to implants formed at least in part from these materials.
Owner:CINVENTION AG

Ultraporous sol gel monoliths

Ultraporous sol gel monoliths and methods for preparing the same are provided, having superior flow characteristics for chromatography and analytical chemistry applications. The methods for forming an ultra porous sol-gel monolith include (a) forming a solution comprising a porogen, a matrix dissolving catalyst and a sol gel precursor; (b) allowing the solution to form a gel; and (c) drying the gel at an elevated temperature. The ultraporous sol gel monoliths are characterized by a porosity of up to about 97%, a BET surface area of at least about 50 m2 / g and substantially no micropores.
Owner:AGILENT TECH INC

Regeneration type artificial blood vessel based on in-situ self stem cell technology and preparation method thereof

The present invention discloses a regeneration type artificial blood vessel based on an in-situ self stem cell technology and a preparation method thereof. The artificial blood vessel is a structure composed of at least three connected bionic support layers, wherein the bionic support layer is prepared by nanometer bionic supports and hydrosol attached to the nanometer bionic supports; the structure is a concentric circle loop and has an inner layer, an insulating layer and an outer layer outwards; the hydrosol of the inner layer and the outer layer are packaged with one or more specificity antibodies and / or cytokines and / or adhered short peptides and / or medicaments. The preparation method includes preparing the inner layer by an electrostatic spinning; preparing the insulating layer on an external surface of the inner layer; preparing the outer layer on an external surface of the insulating layer. The artificial blood vessel of the invention may be degraded safely and automatically during a wound surface repair process, and defect blood vessel is repaired completely during the degradation process, thus a regenerative process and a normal differentiation process are identical, and a good repairing effect will be obtained.
Owner:MEDPRIN REGENERATIVE MEDICAL TECH

Porous 4 group metal oxide and method for preparation thereof

This invention relates to a 4 group metal oxide and to a method for preparation thereof and the 4 group metal oxide prepared by adding a particle growth inhibiter to a hydrosol a hydrogel or a dried product of a hydrous 4 group metal oxide represented by MO(2-x)(OH)2x (wherein M denotes a 4 group metal and x is a number greater than 0.1 or x>0.1) followed by drying and calcining has a specific surface area of 80 m<2> / g or more, a pore volume of 0.2 ml / g or more and a pore sharpness degree of 50% or more and excellent heat stability and is useful for a catalyst or a catalyst carrier in which a catalyst metal is dispersed to a high degree. This invention further relates to a porous 4 group metal oxide and to a method for preparation thereof and the 4 group metal oxide prepared by application of a pH swing operation is characterized by a large specific surface area, excellent heat stability, high dispersion of a catalyst metal and a controlled and sharp pore distribution and is useful for a catalyst or a catalyst carrier of excellent reaction selectivity.
Owner:CHIYODA CORP

Method for preparing nano-doped tin oxide sol

The invention relates to a method for preparing nano-doped tin oxide sol, belonging to the technical field of semiconductor nano film preparation process. The method provided by the invention mainly uses a sol-gel method to prepare nano-doped SnO2 sol on compatible reaction condition via hydrothermal processing. In the method, tin salt is taken as main raw material, villaumite and antimony salt or two parts of antimony or two parts of villaumite in appropriate content are added as doping agent to obtain doped SnO2 sol. High temperature calcination is unnecessary in the synthesized process, and nano-doped SnO2 sol can be obtained with even grains and fine dispersivity. Spray finishing, spin coating, and dipping and drawing method can be carried out on the obtained sol to prepare nano-doped SnO2 film. The film can be applied into various fields, such as low emissivity glass, display equipment, gas sensor, transparency electrode of solar battery and the like.
Owner:SHANGHAI UNIV

Fischer-Tropsch processes and catalysts using stabilized supports

A catalyst and method for producing hydrocarbons using a catalyst support having an improved hydrothermal stability, such as under Fischer-Tropsch synthesis conditions. The stabilized support is made by a method comprising treating a boehmite material in contact with at least one structural stabilizer. Contacting the boehmite with at least one structural stabilizer can include forming a mixture comprising the boehmite material and at the least one structural stabilizer. The mixture can be a sol or a slurry. The treating preferably includes drying or spray drying the mixture, and calcining in an oxidizing atmosphere to obtain the stabilized support. Preferred structural stabilizers can include an element, such as cobalt, magnesium, zirconium, boron, aluminum, barium, silicon, lanthanum, oxides thereof, or combinations thereof; or can include precipitated oxides, such as a co-precipitated silica-alumina.
Owner:CLARIANT INT LTD

Method for preparing integral macroporous alumina

The invention discloses a preparation method of integrated large-hole alumina, belonging to a preparation technique of integrated multi-hole inorganic oxide. The method comprises the following process: reverse concentrated emulsion method is adopted to prepare integrated large-hole organic template taking cinnamene and divinylbenzene as monomer; aluminum isopropoxide or pseudoboehmite is primarily used for preparing Al2O3 hydrosol; the Al2O3 hydrosol is filled into the integrated large-hole organic template; the filled integrated organic / inorganic composites are dried and then are roasted to remove the template, so as to obtain the integrated large-hole alumina. The invention has the advantages of simple and feasible preparation process, moreover the prepared integrated large-hole alumina has micrometer grade communicated large-hole channels (1-50um). The invention is applicable for catalyst carrier, absorption materials and separation materials.
Owner:TIANJIN UNIV

Fluorine-free superhydrophobic finishing agent containing modified nano silicon dioxide hydrosol and application thereof

ActiveCN102021819AExcellent water repellencyBasic physical and mechanical propertiesSilicon compoundsVegetal fibresOrganic solventHYDROSOL
The invention relates to a fluorine-free superhydrophobic finishing agent containing modified nano silicon dioxide hydrosol and application thereof. The finishing agent is prepared by the following steps of: (1) mixing a precursor, an anionic surfactant and water and stirring violently at the temperature of between 20 and 50 DEG C; and (2) slowly adding ammonia water serving as a catalyst dropwise, stirring, adding long-chain alkylsiloxane serving as a modifier and stirring continually so as to obtain modified SiO2 hydrosol. The finishing agent has a stable property, avoids the pollution of an organic solvent and has high water repellency when used for performing superhydrophobic finishing on textiles.
Owner:DONGHUA UNIV +1

Hydrogen storage composition and method

InactiveUS6528441B1Maximize surface area and catalyzing activityLarge specific surface areaHydrogenOther chemical processesHigh pressureHYDROSOL
A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form CnH2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.
Owner:SAVANNAH RIVER NUCLEAR SOLUTIONS

Method for preparing cathode material of sodium-ion battery, namely sodium vanadium fluorophosphates

The invention discloses a method for preparing a cathode material of a sodium-ion battery, namely sodium vanadium fluorophosphates. The method comprises the following steps: using a vanadium source, a phosphorus source and a carbon source as main synthetic raw materials; dissolving into deionized water according to the molar ratio 1:1:1.2 of vanadium: phosphorus: carbon, heating in water bath, and continuously stirring to obtain light green pulp; after vacuum drying, grinding, then transferring into a tube furnace, preburning in an inert atmosphere at a certain temperature rise rate, cooling and then taking out to obtain black VPO4 / C precursor powder; mixing the VPO4 / C with NaF according to a stoichiometric ratio, ball-milling for 3 hours, sending into the tube furnace, then roasting in the inert atmosphere at the certain temperature rise rate, and cooling along with the furnace to obtain a positive active material NaVPO4F / C. According to the invention, cheap and easily-obtained pentavalent vanadium oxide or trivalent vanadium oxide is used as the main raw materials to prepare the sodium vanadium fluorophosphates cathode material through a sol gel activated auxiliary two-step high-temperature solid phase method, and the sodium vanadium fluorophosphates cathode material has the advantages of good stability, uniform particle size and good electrochemical performance. Meanwhile, the method has the advantages of simple synthesis process, short period and low cost and is convenient for large-scale production.
Owner:TIANJIN POLYTECHNIC UNIV

Method of preparing cobalt-base Fischer-Tropsch synthetic catalyst

The invention is a manufacturing method for cobalt Fischer-Tropsch synthesis catalyst. It produces silica gel carrier through sol-gel method, the silica gel carrier is surface mollified by amine liquor, and then the active component cobalt is loaded on to the silica gel surface through isopyknic pickling process. There gets the mollified cobalt silicon catalyst through drying and baking. The reaction activity and selection are enhanced greatly through the mollifying of amine, the operation life is long, and the manufacturing method is simple.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI

Medical anti-sticking membrane and preparation method thereof

The invention provides a medical anti-sticking membrane and a preparation method thereof. The anti-sticking membrane comprises a nanometer frame and hydrosol attached thereon. The hydrosol is internally packed with one or several kinds of styptic medicament or / and anti-sticking medicament. The invention also provides a preparation method of the anti-sticking membrane, comprising the following steps of: preparing electro-spinning solution, styptic medicament and / or anti-sticking medicament-containing hydrosol solution and crosslinker solution; receiving static spinning with the crosslinker solution to obtain the nanometer frame; printing the styptic medicament and / or anti-sticking medicament-containing hydrosol solution onto the nanometer frame by an ink-jet printer, and solidifying the hydrosol solution to obtain the anti-sticking membrane. The anti-sticking membrane has good capability and biological compatibility, and nontoxicity as well as nonirritant, can be completely degraded and absorbed, is compounded with controllably released styptic medicament or / and anti-sticking medicament, has controllable degrading time and speed, and conquers defects of the prior art.
Owner:MEDPRIN REGENERATIVE MEDICAL TECH

Prepn process of monodispersive silica sol

ActiveCN1974385ASolve the shortcomings of small particle sizeImprove controllabilitySilicaReaction temperatureSilica gel
The present invention discloses one kind of nanometer monodispersive silica sol prepared with metal silicon powder and through reaction with water under the catalysis of certain amount of alkali catalyst at temperature of 50-95 deg.c. During the preparation, alkali solution adding speed is so controlled that the newly produced silicon sol precursor concentration is in the new nucleus forming concentration. Compared with available silica sol preparing process, the present invention has the advantages of homogeneous size distribution of nanometer silica sol, capacity of designing the sol size, simple preparation process, low cost and easy precise control.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Nano bionic wound-surface cover and preparation method thereof

ActiveCN101507835AAddress barriers to developmentAvoid inconvenienceProsthesisElectrospinningEngineering
The invention provides a nanometer bionic wound-surface cover and a preparation method thereof. The nanometer bionic wound-surface cover comprises a nanometer bionic bracket and hydrosol attached to the bracket, wherein the hydrosol covers one or a plurality of cytokines. The preparation method for the nanometer bionic wound-surface cover provided by the invention comprises the steps of preparingan electrostatic-spinning solution, a cytokine-containing hydrosol solution and a crosslinker solution, preparing the nanometer bionic bracket by use of electrostatic spinning, using an ink-jet printer to print the cytokine-containing hydrosol solution onto the nanometer bionic bracket, and the like, wherein electrostatic spinning and printing can be repeated so as to form the wound-surface covers different in thickness. The preparation method adopts an in-situ autologous stem-cell engineering technique and adopts stem-cell chemotactic factors to attract autologous stem cells to directionally migrate, enter a wound surface and be differentiated according to designed requirements, thereby avoiding inconvenience caused by using viable cells, achieving rehabilitation effects the same with orbetter than that of using the viable cells and having broad application prospects.
Owner:MEDPRIN REGENERATIVE MEDICAL TECH

Method for preparing porous metal film transparent conducting electrode based on cracking template method

A method for preparing a porous metal film transparent conducting electrode based on a cracking template method comprises the following steps: (1) synthesizing cracking liquid: taking tetrabutyl titanate as a raw material to synthesize microcrystalline titanium dioxide collosol, and obtaining the cracking liquid, (2) fabricating a cracking template: uniformly depositing a cracking film on a substrate with the cracking liquid by a spin-coating method or a lifting method, controlling a temperature condition to allow the cracking film to be cracked naturally to form the cracking template, (3) depositing a metal film: depositing the dense metal film on the cracking template by a magnetron sputtering manner, and (4) removing the cracking template: removing the cracking template from the substrate, cleaning the surface, and forming the porous metal film transparent electrode on the substrate. The transparent conducting electrode prepared with the method has excellent photoelectric properties and higher mechanical and environmental stability; a preparation technology is simple; the resource consumption is low; the transparent conducting electrode is a favorable replacer of the traditional metal oxide electrode; the efficiency of a solar cell can be improved; and the cost can be lowered.
Owner:SOUTH CHINA NORMAL UNIVERSITY

Preparation method and use of hydrophilic automatically-cleaning coating with photocatalytic activity

The invention provides a preparation method of a hydrophilic automatically-cleaning coating with photocatalytic activity, and belongs to the technical field of chemical engineering. The preparation method is characterized in that butyl titanate and ethyl orthosilicate are utilized as precursors; nanoscale TiO2 / SiO2 sol is formed through a sol-gel method; and the nanoscale TiO2 / SiO2 sol is coated on the surface of an object and is naturally dried at normal temperature to form an anatase nanoscale TiO2 / SiO2 composite film with photocatalytic activity. When the anatase nanoscale TiO2 / SiO2 composite film with photocatalytic activity is coated on a solar photovoltaic panel, a vehicle window glass plate or a building glass plate at a normal temperature, the anatase nanoscale TiO2 / SiO2 composite film with photocatalytic activity can fast form a hydrophilic coating. Under natural light irradiation, the hydrophilic coating can decompose greasy dirt adhered to the hydrophilic coating into inorganic pollutants, and through rainwater flushing or artificial washing, the inorganic pollutants are removed so that the solar photovoltaic panel or the vehicle window glass plate or the building glass plate is kept as clean as a new one for a long time. The preparation method provided by the invention reduces a production management cost and improves solar photovoltaic panel generating efficiency.
Owner:NORTH WEST YONGXIN GROUP

Photocatalyst for preparing hydrogen and sulphur by decomposing hydrogen sulfide and preparation method thereof

The invention discloses a photocatalyst for preparing hydrogen and sulphur by decomposing hydrogen sulfide and a preparation method thereof, relating to a photocatalyst and a preparation method thereof. The invention solves the problem that the existing photocatalyst ZnIn2S4-CdIn2S4 the atomic ratio of which is that Zn:Cd=7:3 has low photocatalysis activity. The photocatalyst of the invention is ZnIn2S4-CdIn2S4 doped by transition metal ions. The preparation method comprises: adding sol prepared from transition metal salt, bivalent cadmium salt, bivalent zinc salt, trivalent indium salt and thioacetamide into an autoclave; and carrying out hydrothermal synthesis and vacuum drying to obtain the photocatalyst for preparing the hydrogen and the sulphur by decomposing the hydrogen sulphide. The invention has high catalytic activity; the speed for producing the hydrogen by carrying out photocatalysis on the hydrogen sulphide is 1100-3500 mu mol / h.g which is 1.8-6 times of that obtained by utilizing the ZnIn2S4-CdIn2S4. The photocatalyst of the invention can be used for processing tail gas containing hydrogen sulphide.
Owner:HARBIN 6 RING PETROCHEM TECHN DEVCORP

Prepn process of nanometer composite titania/silica photocatalyst sol and transparent photocatalyzing film

The present invention belongs to the field of inorganic metal oxide, and is especially process of preparing nanometer titania / silica photocatalyst sol and transparent photocatalyzing film. The anatase type nanometer titania / silica photocatalyst sol is prepared with inorganic low concentration titanium compound solution as material at normal pressure and 40-100 deg.c. The sol has high hydrophilicity, high photocatalyzing activity, high transparency and particle size of 15-30 nm. The sol may be painted onto substrate of different properties to form self-cleaning transparent photocatalyzing film with high hardness and high antifouling and antiseptic performance. The sol has high stability, small and homogeneous size and high performance; and the preparation process has low cost and simple operation and is suitable for large scale production and application.
Owner:TECHNICAL INST OF PHYSICS & CHEMISTRY - CHINESE ACAD OF SCI

Lyophobic and oleophylic micro nano-coatings applied to of oil filtering dehydration and preparation method thereof

The invention discloses Lyophobic and oleophylic micro nano-coatings applied to oil filtering dehydration and a preparation method thereof. Base material of the coatings is metal mesh grid with 50-1800 meshes, the surface of the metal mesh grid is coated with a layer of dense micro nano-coating which is dense thin film composed of nano silica global particles with partical size ranging from 90nm to 500nm.In the method of the invention, the sol-gel method is adopted, tetraethyl ester serves as the precursor, ammonia water serves as the catalyst, ethanol serves as the solvent, alkyl oxosilane serves as lyophobic modifier, the method of hydrolytie polycondensation is adopted to obtain lyophobic nano silica sol, the process of impregnation or spraying is adopted to coat the gel on the metal mesh grid with 50-1800 meshes, after thermal treatment, oil-water separation net with lyophobic and oleophylic properties is obtained. The method of the invention features simple process, no harm to the environment, no need of fluorine material, wide application to coalescing separator as a separation filter element and the function of filtration and dehydration of oil.
Owner:SOUTH CHINA UNIV OF TECH

Artificial articular cartilage based on autologous cells and preparation method thereof

The invention provides artificial articular cartilage based on autologous cells and a preparation method thereof. The artificial articular cartilage comprises a nano bionic support and hydrosol adhered to the nano bionic support, wherein one or more cytokines are coated into the hydrosol. The invention also provides the method for preparing the artificial articular cartilage, which comprises the following steps: preparing an electrostatic spinning solution, a cytokine-containing hydrosol solution and a crosslinking agent solution; using the crosslinking agent solution to receive electrostatic spinning so as to prepare the nano bionic support; and using an ink jet printer to print the cytokine-containing hydrosol solution on the nano bionic support, and curing the hydrosol to obtain the artificial articular cartilage. The three-dimensional support adopted by the invention has ideal degradation speed and is degraded after the regeneration of an articular cartilage layer, can meet the requirement of actual clinical application, can be completely degraded, and has good abrasion resistance and lubricity so as to be capable of replacing the cartilage before the regeneration of the articular cartilage layer.
Owner:MEDPRIN REGENERATIVE MEDICAL TECH

Artificial dura mater with bioactivity and preparation method thereof

The invention provides an artificial dura mater with bioactivity, which is formed from a nano-bionic scaffold and hydrosol attached on the nano-bionic scaffold, wherein cell factors and / or a medicament are / is coated in the hydrosol; the nano-bionic scaffold at least contains two layers of connected structures, wherein the structure layer facing to the brain is a hydrophobic anti-adhesive electrospinning layer, and the structure layer opposite to the brain is a hydrophilic nano-cytoskeleton layer. The invention also provides a preparation method of the artificial dura mater, which comprises the following steps: preparing an electrospinning solution, a hydrosol solution containing the cell factors and / or the medicament and a cross linker solution; preparing the artificial dura mater through electrostatic spinning and biological printing. By simultaneously utilizing a biological printing technology and an electrostatic spinning technology for preparing the artificial dura mater, the cell factors can be effectively distributed according to the requirements of concentration and positions, a brain membranization process is the fastest and optimal, and meanwhile, the following adverse reaction of the medicament is reduced because the artificial dura mater can be accurately positioned and quantified by using the biological printing technology.
Owner:MEDPRIN REGENERATIVE MEDICAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products