Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

363230 results about "Process engineering" patented technology

Process engineering is the understanding and application of the fundamental principles and laws of nature that allow us to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products. Process engineering focuses on the design, operation, control, optimization and intensification of chemical, physical, and biological processes. Process engineering encompasses a vast range of industries, such as agriculture, automotive, biotechnical, chemical, food, material development, mining, nuclear, petrochemical, pharmaceutical, and software development. The application of systematic computer-based methods to process engineering is "process systems engineering".

System and method for energy management

A business methodology for optimizing energy procurement energy demand (usage) and energy supply for a facility or complex. After ascertaining a baseline model, energy consumption is monitored and adjusted to reflect dynamic economic factors of operations. With the accumulation of data, contract negotiations with energy suppliers may provide further energy savings. Over time and patterns of usage determined further savings and optimization in energy, equipment, staffing and other operational areas are obtained. Remote access provides efficient monitoring of established systems.

Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking

A process is disclosed for the in situ conversion and recovery of heavy crude oils and natural bitumens from subsurface formations using either a continuous operation with one or more injection and production boreholes, which may include horizontal boreholes, or a cyclic operation whereby both injection and production occur in the same boreholes. A mixture of reducing gases, oxidizing gases, and steam are fed to downhole combustion devices located in the injection boreholes. Combustion of the reducing gas-oxidizing gas mixture is carried out to produce superheated steam and hot reducing gases for injection into the formation to convert and upgrade the heavy crude or bitumen into lighter hydrocarbons. Communication between the injection and production boreholes in the continuous operation and fluid mobility within the formation in the cyclic operation is induced by fracturing or related methods. In the continuous mode, the injected steam and reducing gases drive upgraded hydrocarbons and virgin hydrocarbons to the production boreholes for recovery. In the cyclic operation, wellhead pressure is reduced after a period of injection causing injected fluids, upgraded hydrocarbons, and virgin hydrocarbons in the vicinity of the boreholes to be produced. Injection and production are then repeated for additional cycles. In both operations, the hydrocarbons produced are collected at the surface for further processing.

Method for Performing Uniform Processing in Gas System-Sharing Multiple Reaction Chambers

A method for performing uniform processing in multiple reaction chambers includes (a) conducting a cycle constituted by steps in each reaction chamber according to the order of the reaction chambers at which the steps are conducted; and then (b) conducting the steps in each reaction chamber after changing the immediately prior order of the reaction chambers at which the steps are conducted; and then (c) repeating process (b) until a target treatment is complete at the multiple reaction chambers. The target treatment conducted on a substrate in each reaction chamber is the same.

Phase change based heating element system and method

A method of and apparatus for regulating carbon dioxide using a pre-injection assembly coupled to a processing chamber operating at a supercritical state is disclosed. The method and apparatus utilize a source for providing supercritical carbon dioxide to the pre-injection assembly and a temperature control element for maintaining the pre-injection region at a supercritical temperature and pressure.

Method and system for performing different deposition processes within a single chamber

A method, computer readable medium, and system for vapor deposition on a substrate that introduce a first process gas composition to a process space according to a first vapor deposition process, deposit a first film on the substrate, introduce a second process gas composition into a second process space different in size than the first process space, and deposit a second film on the substrate from the second process gas composition. As such, the system includes a process chamber including a first process space having a first volume. The process chamber further includes a second process space that includes at least a part of the first process space and that has a second volume different from the first volume. The first process space is configured for a first chemical vapor deposition, and the second process space is configured for a second chemical vapor deposition.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products