Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3806results about How to "Easy injection" patented technology

Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking

A process is disclosed for the in situ conversion and recovery of heavy crude oils and natural bitumens from subsurface formations using either a continuous operation with one or more vertical injection boreholes and one or more vertical production boreholes in which multiple, uncased, horizontal boreholes may extend from the vertical boreholes, or a cyclic operation whereby both injection and production occur in the same vertical boreholes in which multiple, uncased, horizontal boreholes may extend from the vertical boreholes. A mixture of reducing gases, oxidizing gases, and steam are fed to downhole combustion devices located in the injection boreholes. Combustion of the reducing gas-oxidizing gas mixture is carried out to produce superheated steam and hot reducing gases for injection into the formation to convert and upgrade the heavy crude or bitumen into lighter hydrocarbons. Communication between the injection and production boreholes in the continuous operation and fluid mobility within the formation in the cyclic operation is induced by fracturing, multiple horizontal boreholes extending from vertical boreholes, or other related methods. In the continuous mode, the injected steam and reducing gases drive upgraded hydrocarbons and virgin hydrocarbons to the production boreholes for recovery. In the cyclic operation, wellhead pressure is reduced after a period of injection causing injected fluids, upgraded hydrocarbons, and virgin hydrocarbons in the vicinity of the boreholes to be produced. Injection and production are then repeated for additional cycles. In both operations, the hydrocarbons produced are collected at the surface for further processing.
Owner:WORLD ENERGY SYST

Crosslinked hyaluronic acid compositions for tissue augmentation

A hyaluronic acid (HA) composition includes crosslinked, water-insoluble, hydrated HA gel particles. The HA includes crosslinks represented by the following structural formula:
HA—U—R2—U—HA
The variables are defined herein. A method of augmenting tissue in a subject includes inserting a needle into a subject at a location in the subject that is in need of tissue augmentation, wherein the needle is coupled to a syringe loaded with the HA composition, and applying force to the syringe, to deliver the HA composition into the subject. A method of preparing the HA composition, includes forming water-insoluble, dehydrated crosslinked HA particles, separating the water-insoluble, dehydrated particles by average diameter, selecting a subset of particles by average diameter, and hydrating the subset of dehydrated particles with a physiologically compatible aqueous solution. Another method of preparing the crosslinked HA composition includes crosslinking a precursor of the crosslinked HA with a biscarbodiimide in the presence of a pH buffer and dehydrating the crosslinked HA. Also included is a method of augmenting tissue in a subject that is in need of tissue augmentation. A method of stabilizing crosslinked HA includes hydrating water-insoluble, dehydrated crosslinked HA with a physiologically compatible aqueous solution that includes a local anesthetic, wherein the value of storage modulus G′ for the stabilized composition is at least about 110% of the value of G′ for a non-stabilized composition,. Also included is the stabilized HA composition.
Owner:ANIKA THERAPEUTICS INC

Dendritic Polymers With Enhanced Amplification and Interior Functionality

Dendritic polymers with enhanced amplification and interior functionality are disclosed. These dendritic polymers are made by use of fast, reactive ring-opening chemistry (or other fast reactions) combined with the use of branch cell reagents in a controlled way to rapidly and precisely build dendritic structures, generation by generation, with cleaner chemistry, often single products, lower excesses of reagents, lower levels of dilution, higher capacity method, more easily scaled to commercial dimensions, new ranges of materials, and lower cost. The dendritic compositions prepared have novel internal functionality, greater stability (e.g., thermal stability and less or no reverse Michael's reaction), and reach encapsulation surface densities at lower generations. Unexpectedly, these reactions of polyfunctional branch cell reagents with polyfunctional cores do not create cross-linked materials. Such dendritic polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper, proton scavengers, polymers, nanoscale monomers, calibration standards for electron microscopy, making size selective membranes, and agents for modifying viscosity in aqueous formulations such as paint. When these dendritic polymers have a carried material associated with their surface and/or interior, then these dendritic polymers have additional properties for carrying materials due to the unique characteristics of the dendritic polymer, such as for drug delivery, transfection, and diagnostics.
Owner:DENDRITIC NANO TECH INC

Hydraulic device for the injection of bone cement in percutaneous vertebroplasty

The present invention relates to the medical field, in particular relates to the practice of percutaneous vertebroplasty where a pair of syringes in the distal extreme of a lengthened hydraulic device, are united by a camera of intermediate connection of larger diameter (pressure exerting body) or modified inverted syringe tube with a bolster, a hydraulic connecting tube of flexible material that transmits the pressure of the smaller diameter manual or impulsion syringe in the proximal extreme of the device toward the intermediate cylindrical larger diameter camera (pressure exerting body), this camera is in an inverted position with regard to the first syringe (fluid control), this intermediate camera has a moving piston longitudinal to the axis of the cylinder that is controlled with the first syringe (manual) and in cooperation with the atmospheric pressure. The injecting syringe loaded with bone cement is coupled with the bolster of the body of pressure, and to the needle that drives the cement toward the interior of the bone. The intermediate camera (pressure exerting body) together with the hydraulic tube and the manual syringe form a hydraulic press system (F/A=f/a) that allows to increase in a potential way the pressure exerted in the first syringe and to make the injection of polymethylmethacrylate (PMMA) at an approximate distance of 1.0 m to 1.5 m.
Owner:DEPUY SYNTHES PROD INC

Pedicle Screw and Device for Injecting Bone Cement into Bone

InactiveUS20070299450A1Easily and stably implanted into boneEasy to fixInternal osteosythesisJoint implantsBone mineralBone cement
Disclosed is a pedicle screw used in spinal fusion surgery and a device for injecting bone cement into a spine having low bone mineral density by using the pedicle screw so as to enhance strength of the spine. The pedicle screw includes a screw rod fixedly inserted into a bone, a head section provided at an upper portion of the screw rod and formed at an inner portion thereof with a U-shaped recess and a screw part, and a coupling section coupled with the screw part of the head section. The coupling section is coupled with a rod support section including a bolt having a screw structure provided at an upper portion of the rod support section, a reverse U-shaped recess formed at a lower portion of the rod support section, and a pair of protrusions provided at lateral portions of the rod support section. The screw part of the head section is formed with a pair of guide slots. The screw rod is formed at an inner portion thereof with a hollow section, injection holes communicated with the hollow section are formed in the screw rod, and a feeding hole is formed in the U-shaped recess for feeding bone cement. The bone cement injection device has a cannula including an elongated body, a pedicle screw coupling member provided at one end of the elongated body so as to be fixed to the pedicle screw, and a handle provided at the other end of the elongated body and having an injector coupling member which is coupled to an inlet of an injector, and an impactor including an elongated cylindrical pressing rod inserted into the elongated body of the cannula and having a length longer than a length of the elongated body of the cannula, and a handle attached to one end of the elongated cylindrical pressing rod.
Owner:HER JI HOON +1

Distributed fault injection mechanism

InactiveUS20080215925A1Validating the robustness of a distributed computing systemEasy injectionError detection/correctionGraphicsGraphical user interface
Methods and systems are provided for testing distributed computer applications using finite state machines. A finite state machine definition for use in a distributed computer system is combined with the fault injections definitions contained within a fault injection campaign that is created for testing the computer application employing that finite state machine. The definition and combination of the finite state machine definition and the fault injection campaign is carried out automatically or manually, for example using a graphical user interface. This combination creates at least one modified finite state machine definition containing the desired injected faults. The modified finite state machine definition is separate from the originally identified finite state machine definition, and the originally identified finite state machine remains intact without injected faults. Trigger points within the finite state machine definition are identified for each fault injection test definition, and the modified finite state machine definition containing the fault injection test definition associated with a given trigger point are used in place of the original finite state machine definition upon detection of that trigger point during runtime of the finite state machine definition.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products