Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3252 results about "Superheated steam" patented technology

Superheated steam is a steam at a temperature higher than its vaporization (boiling) point at the absolute pressure where the temperature is measured. The steam can therefore cool (lose internal energy) by some amount, resulting in a lowering of its temperature without changing state (i.e., condensing) from a gas, to a mixture of saturated vapor and liquid. If unsaturated steam (a mixture which contains both water vapor and liquid water droplets) is heated at constant pressure, its temperature will also remain constant as the vapor quality (think dryness, or percent saturated vapor) increases towards 100%, and becomes dry (i.e., no saturated liquid) saturated steam. Continued heat input will then "super" heat the dry saturated steam. This will occur if saturated steam contacts a surface with a higher temperature.

Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking

A process is disclosed for the in situ conversion and recovery of heavy crude oils and natural bitumens from subsurface formations using either a continuous operation with one or more injection and production boreholes, which may include horizontal boreholes, or a cyclic operation whereby both injection and production occur in the same boreholes. A mixture of reducing gases, oxidizing gases, and steam are fed to downhole combustion devices located in the injection boreholes. Combustion of the reducing gas-oxidizing gas mixture is carried out to produce superheated steam and hot reducing gases for injection into the formation to convert and upgrade the heavy crude or bitumen into lighter hydrocarbons. Communication between the injection and production boreholes in the continuous operation and fluid mobility within the formation in the cyclic operation is induced by fracturing or related methods. In the continuous mode, the injected steam and reducing gases drive upgraded hydrocarbons and virgin hydrocarbons to the production boreholes for recovery. In the cyclic operation, wellhead pressure is reduced after a period of injection causing injected fluids, upgraded hydrocarbons, and virgin hydrocarbons in the vicinity of the boreholes to be produced. Injection and production are then repeated for additional cycles. In both operations, the hydrocarbons produced are collected at the surface for further processing.
Owner:WORLD ENERGY SYST

Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking

A process is disclosed for the in situ conversion and recovery of heavy crude oils and natural bitumens from subsurface formations using either a continuous operation with one or more vertical injection boreholes and one or more vertical production boreholes in which multiple, uncased, horizontal boreholes may extend from the vertical boreholes, or a cyclic operation whereby both injection and production occur in the same vertical boreholes in which multiple, uncased, horizontal boreholes may extend from the vertical boreholes. A mixture of reducing gases, oxidizing gases, and steam are fed to downhole combustion devices located in the injection boreholes. Combustion of the reducing gas-oxidizing gas mixture is carried out to produce superheated steam and hot reducing gases for injection into the formation to convert and upgrade the heavy crude or bitumen into lighter hydrocarbons. Communication between the injection and production boreholes in the continuous operation and fluid mobility within the formation in the cyclic operation is induced by fracturing, multiple horizontal boreholes extending from vertical boreholes, or other related methods. In the continuous mode, the injected steam and reducing gases drive upgraded hydrocarbons and virgin hydrocarbons to the production boreholes for recovery. In the cyclic operation, wellhead pressure is reduced after a period of injection causing injected fluids, upgraded hydrocarbons, and virgin hydrocarbons in the vicinity of the boreholes to be produced. Injection and production are then repeated for additional cycles. In both operations, the hydrocarbons produced are collected at the surface for further processing.
Owner:WORLD ENERGY SYST

Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery

The present invention is an in-situ apparatus for generating carbon dioxide gas at an oil site for use in enhanced oil recovery (EOR). The apparatus includes a steam generator adapted to boil and superheat water to generate a source of superheated steam, as well as a source of essentially pure oxygen. The apparatus also includes a steam reformer adapted to react a carbonaceous material with the superheated steam and the pure oxygen, in an absence of air, to generate a driver gas comprising primarily carbon dioxide gas and hydrogen gas. A separator is adapted to separate at least a portion of the carbon dioxide gas from the rest of the driver gas to generate a carbon dioxide-rich driver gas and a hydrogen-rich fuel gas. A compressor is used for compressing the carbon dioxide-rich driver gas for use in enhanced oil recovery, and the compressed carbon dioxide-rich driver gas, with substantially no oxygen, is injected to a predetermined depth in order to enhance oil recovery at the oil site. Unlike traditional CO2-EOR, which requires large power plants stationed near metropolitan areas and expensive pipeline networks, the in-situ apparatus can be placed or constructed at the site of the oil field, while a portion of the carbonaceous material may be obtained from a site outside the oil field.
Owner:PIONEER ENERGY

Method and apparatus for producing superheated steam using heat from the incineration of waste material

PCT No. PCT/JP97/00573 Sec. 371 Date Jan. 12, 1998 Sec. 102(e) Date Jan. 12, 1998 PCT Filed Feb. 27, 1997 PCT Pub. No. WO97/32161 PCT Pub. Date Sep. 4, 1997According to the present invention, boiler water is pressurized so that its boiling point is set at approximately 200 DEG C. to 320 DEG C. The boiler water is heated in at least two stages. Thermal energy of gases containing chlorine compounds is used to heat the water to its boiling point. Thermal energy of gases which do not contain chlorine compounds is used to heat the water from its boiling point until superheated steam of a given temperature is generated. The heating which uses the thermal energy of gases containing chlorine compounds is accomplished using the thermal energy from the combustion of pyrolysis gases obtained from a pyrolysis means in which waste material is supplied into a chamber containing a fluidized bed medium which has been heated to at least 300 DEG C., and a pyrolytic reaction is induced. The heating which uses the thermal energy of gases which do not contain chlorine compounds is accomplished using the thermal energy obtained from a char combustion means to combust char in which a char mixture consisting of unpyrolyzed residue and fluidized bed medium removed from the pyrolysis means is fluidized by a stream of air, and the unpyrolyzed residue is combusted.
Owner:MITSUBISHI HEAVY IND LTD

Apparatus and method for extracting heat from contaminated waste steam

Disclosed is a contaminated waste steam heat recovery apparatus 10 and method therefore which includes a primary condensing unit 38, a low pressure water washing unit 26, a liquid to liquid heat exchanger 36 and a vent fan 31. Waste gas is ducted from fryer 11 to a de-super-heating chamber 14 wherein superheated steam is converted to saturated steam by spraying water into the steam using spray nozzles 15. The gas is then introduced into a vertically disposed air to liquid heat exchanger 16 and is drafted downward therethrough. As heat is removed from the waste gas, water vapor in the steam condenses and in the process, collects some of the oil and hydrocarbons present. A plurality of condensate trays 19 are disposed below the bottom end of heat exchanger 16 in a cascading fashion to collect hold the condensate in the airflow path such that it will absorb some of the heat still present in the remaining waste gas. An oil outlet 22 is provided at the top of collection basin 22 for drawing off concentrated oil 23. The waste gas is pulled into a low pressure water washer 26 where it is washed by a second set of spray nozzles 15. Waste gas and water are sucked downward through a set of turbulence inducing baffles 28. The remaining waste gas is sucked out though exhaust tube 30, using vent fan 31, and vented to the atmosphere.
Owner:ALPHA ENGINEERS

Shunting-type isothermal sulfur-tolerant conversion process and equipment thereof

ActiveCN101704513ASatisfy conversion rate requirementsMeet the requirements of adiabatic conversion control temperature riseHydrogenChemical industryShunt typesSulfur
The invention discloses a shunting-type isothermal sulfur-tolerant conversion process. The process comprises the following steps: shunting raw coal gas from exterior into at least two parts; leading overheat stream in the first part of the raw coal gas to increase the temperature to 200-300 DEG C; and then entering a first-stage conversion reaction step to carry out a conversion reaction and generate first conversion gas; and conveying the other part of the raw coal gas to next-stage conversion reaction step to carry out a conversion reaction. The catalyst bed of a shift converter has the advantages of stable temperature, simple control, convenient operation and low output CO content. The invention has the advantages of short conversion flows, few equipment, reduced resistance, great byproduct stream amount, high overheat temperature, stream pressure and heat recovery rate, and the like, thereby achieving the aims of reducing conversion stages, equipment number and resistance fall, decreasing investment, having great byproduct stream amount and high overheat temperature, stream pressure and heat recovery rate, reducing conversion stream consumption and outward wastewater discharge, protecting the environment and easily maximizing the device equipment. The invention also discloses shunting-type isothermal sulfur-tolerant conversion equipment used by the process.
Owner:SHANGHAI INT ENG CONSULTING

System for converting solar radiation into electricity

A system is provided for converting thermal energy derived from a solar field into electricity. The system is adapted to operate in accordance with at least two modes of operation, depending upon the thermal energy intake, and comprises: a first power generation sub-system comprising means to heat water into superheated steam by exchanging heat with a first heat transfer fluid being heated at the solar radiation collecting field, and a back pressure turbine for producing electricity; a second power generation sub-system comprising means to heat a second working fluid, and the second working fluid is used to operate a second turbine for producing electricity; and wherein the system is characterized in that when the thermal energy received at the first power generation sub-system exceeds a predetermined threshold of a selected criterion, both power generation sub-systems are operative to produce electricity and at least part of the heat required to heat the second working fluid is derived from exhaust steam being produced at the first power generation sub-system, whereas when the thermal energy received at the first power generation sub-system does not exceed that threshold, the thermal energy conveyed by the first heat transfer fluid is used essentially to heat the second working fluid and the electricity is generated only by the second power generation sub-system.
Owner:MITTELMAN GUR

Solar cogeneration vessel

InactiveUS20120325290A1Reduces Levelized Cost OfMinimizes another factorSolar heating energySolar heat simulation/predictionData acquisitionCogeneration
An offshore vessel embodies a mobile buoyant energy recovery system enabled to extract energy from solar power. An exemplary energy recovery system comprises concentrating solar thermal power systems (CSP) or concentrating photovoltaic power (CPV) systems on the deck of the vessel. Within the vessel hull, ballast water serves multiple purposes. The ballast not only stabilizes the vessel, but also provides reactant for hydrogen electrolysis or ammonia synthesis, or steam for a turbine. For CPV systems the ballast conducts heat as a coolant improving the efficiency and durability of photovoltaic cells. For CSP systems the ballast water becomes superheated steam through a primary heat exchanger in the concentrator. In some embodiments, some steam from the CSP primary heat exchanger or from the CPV coolant system undergoes high-pressure electrolysis of enhanced efficiency due to its high temperature. In some embodiments, the remaining steam that did not undergo electrolysis drives a steam turbine providing electrical current for electrolysis. A secondary heat exchanger takes heat from the steam expelled from an energy storage process to efficiently distill ballast water at a lower temperature thus minimizing corrosion and build-up of scale. A remote control Supervisory Control and Data Acquisition System (SCADA) determines position, navigation, configuration, and operation of the preferably unmanned modular mobile buoyant energy recovery structure based on Geospatial Information Systems (GIS), Velocity Performance Prediction (VPP) models, Global Positioning Satellites (GPS) and various onboard sensors and controls.
Owner:INTEGRATED POWER TECH CORP

Sintering ore cooling device and waste heat recovery system thereof

The invention relates to the physical heat recovery field of solid high temperature materials. The system can be applied in the waste heat recovery of extra-large high-temperature particles such as high-temperature sintering ore and the like and the process is as follows: the high-temperature sintering ore from a sintering machine falls into a cold sinter furnace through a feeding system, gradually falls with ore discharge and enters a cooling section to radiate heat. The cooled sintering ore enters a vibrator feeder discharging system through a blanking hopper and a regulating gate. The process can be adopted to cool the sintering ore from about 700-800 DEG C to about 100 DEG C. Cold air provided by an air blower enters the cold sinter furnace through an air inlet and a blast cap, absorbs heat in the cooling section and then enters an annular channel, the high-temperature gas from the annular channel enters a waste heat boiler through a dust remover, the heat is transferred to a working medium and then pumped by the draft fan through the dust remover, and the gas is discharged in a chimney when reaching the dedusting standard. The heat-absorbing working medium (usually water) is converted to superheated steam with a certain parameter in the waste heat boiler to do work in a turbine and drive a generator to generate power. Dead steam after doing work enters a condenser and is sent back to the waste heat boiler through a circulating water pump, thus, a thermal cycle is completed.
Owner:刘柏谦
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products