Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2559 results about "Temperature treatment" patented technology

Method for recovering polysilicon ingots, carborundum powder and polyethylene glycol from cutting waste mortar

The invention discloses a method for recovering polysilicon ingots, carborundum powder and polyethylene glycol from cutting waste mortar. The recovering method comprises the following steps shown as an attached diagram, wherein the high temperature purification comprises the following steps of: mixing the prepared silicon micro powder with a fluxing agent according to the weight ratio of 1: 0.5-5 into lumps, carrying out high temperature treatment in a high temperature vacuum furnace with the treatment temperature range of 1450-1800 DEG C and the treatment time range of 1-10h; and then carrying out directional solidification on melting-state high purity silicon subjected to the high temperature treatment to obtain the polysilicon ingots; wherein the fluxing agent is selected from one or any mixture of silica, alumina, calcium oxide, magnesium oxide, potassium oxide, sodium oxide, calcium fluoride, magnesium fluoride, sodium fluoride, sodium chloride, potassium chloride and calcium chloride. The invention has the advantages that: the yields of carborundum and polyethylene glycol are high and can reach more than 70-80 percent; and the recovered polysilicon ingots reach the purity of 6-7N and completely satisfy of the requirement for preparing silicon slices of silicon solar cell.
Owner:唐康宁

Preparation method of silicon/carbon multi-component composite negative electrode material

ActiveCN103545493AGood dispersionDispersion is better than that of materials without surface treatmentMaterial nanotechnologyCell electrodesCarbon nanotubeSilicon oxide
The invention provides a preparation method of a silicon/carbon multi-component composite negative electrode material. The preparation method comprises the following steps: (1) preparing a carboxyl carbon nano-tube by using acid and a carbon nano-tube, or preparing an aminated carbon nano-tube by using the carboxyl carbon nano-tube; (2) oxidizing the surface of nanometer silicon so as to generate a layer of silicon oxide, or aminating slightly oxidized nanometer silicon by using ammonia-containing organosilane under the condition of heating reflux; (3) adding the carboxyl carbon nano-tube and the aminated nanometer silicon, or the carboxyl carbon nano-tube and the slightly oxidized nanometer silicon to an organic carbon source-containing solvent, dispersing and carrying out spray drying-pyrolysis; (4) mixing a material obtained in the step (3) with asphalt, and sequentially carrying out low-temperature, constant temperature and high-temperature heat treatments, thus obtaining a secondary silicon-carbon nano-tube/amorphous carbon composite negative electrode material; and (5) carrying out airflow crushing, grading, adding to the organic carbon source-containing solvent, carrying out spray drying-pyrolysis or spray pyrolysis, and carrying out high-temperature treatment, thus obtaining the silicon/carbon multi-component composite negative electrode material. The silicon/carbon multi-component composite negative electrode material prepared by the method has the advantages of large reversible capacity, designable capacity, good cycle performance, high tap density and the like.
Owner:CENT SOUTH UNIV

Preparation method of anode material for power lithium ion battery

The invention discloses a preparation method of an anode material for a power lithium ion battery. The preparation method comprises the following steps: by adopting petroleum coke ground until the grain size is 1-6mu m, calcined petroleum coke or needle coke as a raw material, adding additives, adding a mixture to a reaction kettle to carry out first high-temperature carbonization coating under the protection of the inert atmosphere, then grinding the mixture with a grinder until the grain size is 5-13mu m, then carrying out superhigh-temperature graphitization at a temperature above 3200 DEG C, adding one or a mixture of petroleum asphalt, coal asphalt and resin to a material obtained after graphitization, and then enabling the mixture to enter a carburization furnace to undergo second coating under the protection of the inert atmosphere to obtain the anode material for the power lithium ion battery, namely a spheroidal artificial graphite material which is formed through bonding after being coated with granules and undergoes two-time coating and three-time high-temperature treatment. The preparation method has the advantages that the discharge rate property of the anode material is improved, the low temperature properties of the anode material are improved, and the latest requirements of the market for the product are further met.
Owner:DONGGUAN KAIJIN NEW ENERGY TECH

Energy storage battery management system

The invention discloses an energy storage battery management system. A distributed three-layer management system is adopted in the system, wherein the management system comprises a bottom BMU (Battery Measurement Unit), a middle BCMS (Battery Cluster Management System) and a top BAMS (Battery Array Management System). The bottom BMU comprises a voltage and temperature measuring module and a charging/discharging balancing module; the middle BCMS is the core of the battery management system and comprises a voltage temperature treatment module, a balance control module, a relay control module, an AD (Analog and Digital) collecting module and a core parameter calculating module; and the top BAMS comprises a battery information gathering module, a system alarm information treatment module, a BAMS-PCS (Battery Array Management System-Process Control System) communicating module and a BAMS-PCS-upper monitoring system communicating module. Information transmission in the three layers of structures in the system is realized by using a CAN2.0B communication protocol; and the communication between the BAMS and an energy conversion PCS system and an upper monitoring system is realized by using a Modbus TCP (Transmission Control Protocol). On account of the special requirement on the battery management system in the field of energy storage, the invention provides the energy storage battery management system which is high in reliability, complete in function, real-time and stable in communication and relatively complete in management system structure.
Owner:BEIJING HUADIAN TIANREN ELECTRIC POWER CONTROL TECH +1

Ordered mesoporous carbon/tungsten carbide composite material and supported catalyst thereof and preparation method thereof

The invention discloses a preparation method for an ordered mesoporous carbon/tungsten carbide composite material and a supported catalyst thereof. In the method, an organic matter and a tungsten salt are separately used as a carbon source and a tungsten source, and the carbon source and the tungsten source are mixed with a surfactant; and a precursor of the ordered mesoporous carbon/tungsten carbide is synthesized by a solvent-evaporation induced self-assembly method, and then the precursor is subject to high-temperature treatment in the inert atmosphere to form the ordered mesoporous carbon/tungsten carbide composite material. The ordered mesoporous carbon/tungsten carbide composite material prepared by the method has the characteristics of high degree of order, narrow aperture distribution, large specific surface area (greater than 500 m<2>/g) and the like. The invention further comprises a supported catalyst prepared by supporting active components on the ordered mesoporous carbon /tungsten carbide composite material which is prepared by the method; and because of the synergistic effect and the structure effect of the ordered mesoporous carbon/tungsten carbide composite material, the catalyst has higher methanol electro-oxidation catalytic activity than a commercial carbon platinum-ruthenium catalyst.
Owner:SUN YAT SEN UNIV

Preparation method of high-performance nitrogen-doped three-dimensional graphene

The invention relates to the technical field of synthesizing of graphene materials and provides a preparation method of nitrogen-doped graphene. The preparation method includes: using an improved Hummers method to prepare continuous large-piece graphene oxide; using a hydrothermal method to prepare the graphene oxide into graphene of a porous three-dimensional structure; ultrasonically dispersing the graphene of the porous three-dimensional structure into an acid solution with the pH being 1-5, adding aniline, well mixing, adding ammonium persulfate, well mixing, and transferring the obtained mixed liquid into a teflon container for hydrothermal reaction so as to obtain a porous three-dimensional graphene-polyaniline compound; performing high-temperature treatment under nitrogen protection to allow polyaniline to decompose out nitrogen sources so as to obtain the nitrogen-doped porous three-dimensional graphene. The method has the advantages that the nitrogen-doped graphene with high nitrogen content can be prepared, the structure of the three-dimensional graphene can be kept, the obtained nitrogen-doped porous three-dimensional graphene is good in electrochemical performance and quite suitable for being used for producing a super capacitor, and the method is convenient to operate and beneficial to industrial popularization.
Owner:NANJING UNIV OF POSTS & TELECOMM

Hot isostatic pressing three-control method suitable for additive manufacturing parts

The invention belongs to the technical field of additive manufacturing, and relates to a hot isostatic pressing three-control method suitable for additive manufacturing parts. The method comprises the steps that design of the hot isostatic pressing treatment technology is firstly carried out according to the materials and defect conditions of parts, in order to prevent deformation of the parts in complex shapes, the low-temperature and high-pressure treatment technology is selected, and auxiliary tools are matched to guarantee the shapes and size precision of the parts. In addition, in the hot isostatic pressing treatment process, according to the requirement of the phase control technology of the parts, heat treatment is selected to be carried out while hot isostatic pressing high-temperature treatment is carried out, or heat treatment is carried out in the cooling process after hot isostatic pressing treatment is finished, phases and structures are regulated and controlled, and the additive manufacturing parts with the needed performance are obtained. Control over the shapes of the additive manufacturing parts, improving of the performance of the additive manufacturing parts and phase control of the additive manufacturing parts are combined, shape control, performance control and phase control are achieved in the short procedure in the hot isostatic pressing technology process, cost can be better reduced, and industrial production can be achieved.
Owner:CHINA IRON & STEEL RES INST GRP +1

Preparation method of nitrogen-doped graphene loaded platinum nano-particle catalyst

The invention discloses a preparation method of a nitrogen-doped graphene loaded platinum nano-particle catalyst. The preparation method comprises the following steps of: firstly, preparing graphene oxide (GO); secondly, preparing polyaniline/graphene oxide (PANI/GO) through a liquid-liquid interface polymerization method; thirdly, drying the PANI/GO, transferring the dried PANI/GO into a tubular furnace, and performing high-temperature treatment for 2 hours at 800 DEG C to prepare NGs (nitrogen-doped graphenes); and finally, ultrasonically dispersing the NGs into an aqueous solution, uniformly mixing the NGs with chloroplatinic acid according to a certain mass ratio, slowly adding sodium borohydride (NaBH4) into the mixed solution, and performing magnetic stirring for 8 hours to prepare the NGs loaded platinum nano-particle catalyst (Pt/NGs) which takes the NGs as a catalyst carrier to uniformly load platinum nano-particles to the surfaces of the NGs without any chemical modification. The nitrogen atoms which are doped into molecular structures of GNs not only provide a large amount of active sites for PtNPs loading, but also enhance the interaction between the PtNPs and an NGs carrier and improve the catalytic stability and catalytic activity of a nano composite material.
Owner:NANCHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products