Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1271 results about "Cell material" patented technology

Method for directly roasting and processing spent lithium ion batteries and recycling valuable metals

The invention relates to a method for directly roasting and treating spent lithium ion batteries and recycling valuable metals, in particular to a method for recycling and treating spent lithium ion batteries using lithium cobalt oxide as an anode material. The method comprises the following steps: firstly, remove organic binder on an organic diaphragm material and an electrode material in the batteries by roasting at a temperature of 500 DEG C to 850 DEG C; crushing and mixing the roasted battery material with sodium sulfate (or potassium sulfate) and concentrated sulfuric acid before size mixing; carrying out secondary heat treatment in an electric stove at a temperature of 350 DEG C to 600 DEG C to convert metals in the spent lithium ion batteries, such as cobalt, copper, lithium, and the like into easily water-soluble sulfate which is leached by water or a dilute sulphuric acid solution; then, using an organic extracting agent to respectively extract the cobalt and the copper from a leaching solution and obtain a cobalt product and a copper product; using sodium carbonate to precipitate the metal lithium from the leaching solution after the cobalt and the copper are removed; and enabling the leaching solution to return treatment heat so as to secondarily treat materials. The invention has a metal leaching rate higher than 99.5 percent and a metal recovery rate higher than 99 percent.
Owner:BEIJING GENERAL RES INST OF MINING & METALLURGY

Method for non-linear ultrasonic online detection of early fatigue damage to metal material

InactiveCN101806778ARealize the whole process of fatigue detectionSolve misjudgmentMaterial analysis using acoustic emission techniquesFatigue damageSonification
A method for the non-linear ultrasonic online detection of early fatigue damage to a metal material belongs to the field of nondestructive detection. The method comprises the following steps: determining an excitation signal parameter according to the thickness of a tested piece and inputting the parameter to an arbitrary function generator to generate a sound signal; determining a threshold value of an acoustic emission instrument according to the amplitude of a no-load noise signal; performing fatigue loading on the tested piece, continuously detecting an acoustic emission signal in real time with an acoustic emission sensor, amplifying the acoustic emission signal, inputting the acoustic emission signal into the acoustic emission instrument, and judging ring with the acoustic emission instrument when the amplitude of the acoustic emission signal exceeds the preset the threshold value of the acoustic emission instrument; detecting a non-linear ultrasonic signal at equal time interval if the acoustic emission instrument does not display the ring or the times of the continuous ring is not more than an empirical value; and stopping detection if the displayed ring times is more than the empirical value, because fatigue cracks are generated and develop. On the basis of non-linear ultrasonic nondestructive detection, the method of the invention introduces acoustic emission technique, so the method does not make incorrect judgment when detecting the early fatigue damage to the metal material and realizes continuous online detection.
Owner:BEIJING UNIV OF TECH

Semi-liquid metal electrode energy storage battery

The invention relates to a semi-liquid metal electrode energy storage battery, belonging to the field of an energy storage battery, and aiming at solving the problems that the all-liquid metal battery is narrow in battery material selection range and high in running temperature, and has potential safety problem. The semi-liquid metal electrode energy storage battery comprises a shell, a positive pole, electrolyte, a negative pole and a collector, wherein the positive pole is alloy made from one or more of Sn, Sb, Pb, Bi and Te; the negative pole is alloy made from one or more of Li, Na, Mg and Ca; and the electrolyte is a mixture of inorganic salt mixture and ceramic powder. When the semi-liquid metal electrode energy storage battery runs, the positive pole is in a semi-liquid state structure with alloy solid phase distributed in liquid phase, and the electrolyte is melted into semi-liquid state paste, so that the short circuit of the positive pole and the negative pole can be effectively prevented, the energy storage cost is lowered, the working temperature of the battery is reduced, the corrosion speed of the shell is slowed down, the service life of the battery is prolonged, the safety and the reliability of running can be improved, and the semi-liquid metal electrode energy storage battery is suitable for storing energy for new energy power generation grid-connection, frequency modulation and peak-load regulation of an electrical power system as well as smart power grid construction.
Owner:HUAZHONG UNIV OF SCI & TECH

Demonstration process for recovering waste and old dynamic lithium iron phosphate cell in environmental protection mode

The invention relates to a demonstration process for recovering a waste and old dynamic lithium iron phosphate cell in an environmental protection mode, which belongs to the technical field of recovery of the power lithium iron phosphate cell. The method comprises the following steps: completely discharging the cell, extracting an electrolyte in the cell, adding a certain amount of solvent or displacement liquid, standing for 30 minutes and extracting the inner liquid of the cell, and distilling the extracted electrolyte to obtain the liquid for cycle usage when the electrolyte is displaced. According to the invention, the cell is cut by 1cm at the position along the cell top through a water jet, an electrical core is taken, wherein the steel casing, or aluminium casing or a PP plate can be directly recovered for usage. The anode, the cathode and a diaphragm are separated, and the diaphragm can be directly recovered through cleaning by ethanol. After the anode and the cathode are separated through physical methods such as ultrasound, a copper foil and an aluminium foil can be directly recovered, anode and cathode powder can be reused to be a cell material through high temperature treatment, and the purposes of no waste and no pollution can be reached by recovering the elements through a chemical method.
Owner:BEIJING UNIV OF TECH +1

Resource recycling method of waste battery cathode materials

The invention relates to a resource recycling method of waste battery cathode materials. The resource recycling method comprises the following steps: performing high-temperature calcinating to the waste battery cathode materials so as to separate active powder in the cathode materials from aluminum foil; dissolving the obtained active powder into acid solution, and then filtering to obtain filtrate; determining the concentration of metal ions in the filtrate, and correspondingly supplementing nickel and/or cobalt and/or manganese ions into the solution, so that the molar concentration ratio of nickel, cobalt and manganese ions is 1:1:1; adding sodium hydroxide into the prepared nickel, cobalt and manganese mixture solution, and heating to lead the nickel, cobalt and manganese ions to be co-precipitated, then filtering the precipitate and washing and drying to obtain a nickel-cobalt-manganese precursor; adding sodium carbonate into the filtrate obtained in the step IV, and reacting to obtain lithium carbonate precipitate, filtering, washing and drying the lithium carbonate precipitate, to obtain lithium carbonate powder; and mixing the nickel-cobalt-manganese precursor with the lithium carbonate powder, and calcinating to obtain the lithium nickel cobalt manganese cathode materials. A ternary cathode material is prepared by resource recycling ofvarious battery materials, and batteries produced from the ternary cathode material are lower in cost, higher in electric capacity and better in performance compared with single cobalt-lithium batteries, manganese-lithium batteries and nickel-lithium batteries.
Owner:王剑

Nanometer sulfur-based positive electrode composite material for lithium sulfur batteries, and preparation method thereof

The invention discloses a nanometer sulfur-based positive electrode composite material for lithium sulfur batteries, and a preparation method thereof. The positive composite material is prepared through compounding a core-shell structure with reduced graphene oxide, the core-shell structure is formed by nanometer elemental sulfur and a conductive polymer nanoparticle, and the sulfur-conductive polymer nanoparticle core-shell structure is uniformly inlaid between graphene sheets to form a sandwiched three-dimensional conductive network. The preparation method of the positive electrode composite material comprises the following steps: forming the core-shell structure through in situ polymerization of the conductive polymer nanoparticle on the surface of the nanometer elemental sulfur core prepared through a low temperature liquid phase technology, and coating the surface of the core-shell structure with the reduced graphene oxide to obtain the positive electrode composite material for lithium sulfur batteries. The positive electrode composite material has the advantages of simple preparation process, low cost, small energy consumption, controllable sulfur content, strong repeatability and easy large-scale production. The positive electrode composite material can improve the discharge specific capacity of a battery material and the active substance utilization rate as a lithium sulfur battery positive electrode material in order to greatly improve the cycle performances of the battery.
Owner:CENT SOUTH UNIV

Method for ultrasonic detection of bonding quality of thin-walled metal and non-metal material

The invention discloses a method for ultrasonic detection of the bonding quality of thin-walled metal and a non-metal material, wherein an ultrasonic instrument is adopted for detection. The method comprises the steps of: firstly, making a comparative sample, and calibrating the sensitivity of the ultrasonic instrument according to a debonding defect testing hole in the comparative sample; then performing defect position testing on a product: detecting the bonding quality of the thin-waled metal and the non-metal material by adopting the calibrated ultrasonic instrument, placing an output port of a longitudinal wave probe of the ultrasonic instrument on an outer metal surface of the material product, and performing 100% scanning on a bonding face by adopting a moving scanning manner; and if the height of multiple pulse echoes of longitudinal waves at cells 6 to 10 of a horizontal baseline on a oscillography screen of the instrument is found to reach or exceed initial sensitivity during moving scanning, judging that a part below the probe has a debonding defect position or an adverse bonding defect, and if a height envelope curve of the multiple pulse echoes of the longitudinal waves at cells 6 to 10 of the horizontal baseline on the oscillography screen is lower than 50% and gradually decreases to 20% or no reflected waves exist, judging that the bonding quality is intact.
Owner:湖北三江航天江北机械工程有限公司

Method for removing lithium ion battery nickel-rich material surface lithium residues by liquid phase precipitation method

The invention discloses a method for removing lithium ion battery nickel-rich material surface lithium residues by a liquid phase precipitation method. The method for removing the lithium ion battery nickel-rich material surface lithium residues by the liquid phase precipitation method includes the steps: dispersing lithium ion battery nickel-rich materials into phosphate solution, combining the nickel-rich material surface lithium residues with phosphate radical ions so as to form precipitation, nucleating on the material surface, and calcining so that a material with the surface wrapped with a compact Li3PO4 layer is obtained. The wrapping layer prepared by the method is more uniform and compact than a traditional wrapping layer, and storage performance of the material in air is obviously improved; and the moisture absorption performance of the nickel-rich materials can be improved while water brought into electrolyte by electrode materials is reduced, and structural stability of the material is enhanced. Moreover, Li3PO4 is better in stability in the electrolyte than in the battery materials, so that the comprehensive electrochemical performance of a positive electrode material can be effectively improved. The method for removing the lithium ion battery nickel-rich material surface lithium residues by the liquid phase precipitation method is simple in preparation process, short in flow path and low in production cost, and the prepared positive electrode material is excellent in physical performance and electrochemical performance.
Owner:CENT SOUTH UNIV

Preparation method of porous silicon/graphite/carbon composite negative electrode material for lithium-ion secondary battery

The invention relates to a preparation method of a porous silicon/graphite/carbon composite negative electrode material for a lithium-ion secondary battery. A silicon source of the composite materialis natural mineral soil: namely kaolinite, montmorillonite, mica powder, wollastonite, vermiculite powder, pumice powder and coal gangue. The silicon source is reduced into elemental silicon by usinga metal element or alloy powder and anhydrous metal chloride under a mild condition, and the reduced porous silicon, graphite and an organic carbon source are subjected to high-energy ball mill mixing. The reduction temperature is low, the inherent pore structure of the natural mineral soil is effectively reserved and the prepared silicon material has relatively high specific surface area and abundant pores and has excellent electrochemical properties. Volume expansion can be effectively relieved through the inherent pore characteristic of the natural mineral soil; and the prepared composite material has higher charge-discharge capacity and stability. Especially the kaolinite is wide in source and low in price, so that the preparation cost of the battery material is greatly reduced. The porous silicon/graphite/carbon composite negative electrode material is friendly to environment, simple in preparation method, instrument and equipment and suitable for industrial production.
Owner:NANKAI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products