Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

4362 results about "Reflux" patented technology

Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial and laboratory distillations. It is also used in chemistry to supply energy to reactions over a long period of time.

In situ method and system for extraction of oil from shale

ActiveUS20070193743A1Easy to moveAvoid insufficient temperatureInsulationFluid removalClosed loopEarth surface
A system and process is disclosed for retorting oil shale and extracting shale oil and other hydrocarbons therefrom, in which a cased heat delivery well is drilled generally vertically through an overburden and then through a body of oil shale to be retorted to the bottom thereof, generally horizontally under the body of oil shale to be retorted, and then back to the earth surface. Heat energy is transmitted conductively to the body of oil shale to be retorted from a closed loop heat delivery module in the well, the module comprising a fluid transmission pipe containing a heating fluid heated to at least a retorting temperature. Heat energy is also transmitted to the body of oil shale to be retorted above the fluid transmission pipe by vapor conduits that conduct retort vapors upward through the body of oil shale to be retorted; the ascending retort vapors condense and reflux, delivering their latent heat of vaporization to the body of oil shale to be retorted, and the condensed retort liquids descend. If not recycled, the retort liquids are collected in a sump at the bottom of a production well and are transmitted to the surface for processing. The vapor conduits communicate at upper ends thereof with the production well, so that vapors that do not reflux are collected in the production well and are transmitted to the surface for processing.
Owner:AMERICAN SHALE OIL

Support of olefinic polymerization catalyst and preparation method thereof, solid catalyst components for olefinic polymerization and olefinic polymerization catalyst

The invention relates to a support of an olefinic polymerization catalyst and a preparation method thereof, solid catalyst components for olefinic polymerization and an olefinic polymerization catalyst. The support of the olefinic polymerization catalyst is dialkoxy magnesium. The preparation method of the support of the olefinic polymerization catalyst comprises the following steps: in an inert gas protective atmosphere, reacting magnesium and alcohol, which serve as raw materials, in the presence of a halogenating agent under reflux to prepare the dialkoxy magnesium, wherein the weight ratio of alcohol to magnesium is (4-50):1; the halogenating agent is at least one of halogen simple substances and halides, and the mol ratio of halogen atom to magnesium is (0.0002-0.2):1; and the dialkoxy magnesium is spherical particles of which the average particle size is 10-150 um and the particle size distribution index SPAN is smaller than 1.1. The olefinic polymerization catalyst prepared by the support has high activity, and the polymer has the advantages of high bulk density, good particle shape and uniform distribution; and thus, the olefinic polymerization catalyst is suitable for producing propylene homopolymer and copolymer.
Owner:CHINA PETROLEUM & CHEM CORP +1

Preparation method of silicon/carbon multi-component composite negative electrode material

ActiveCN103545493AGood dispersionDispersion is better than that of materials without surface treatmentMaterial nanotechnologyCell electrodesCarbon nanotubeSilicon oxide
The invention provides a preparation method of a silicon/carbon multi-component composite negative electrode material. The preparation method comprises the following steps: (1) preparing a carboxyl carbon nano-tube by using acid and a carbon nano-tube, or preparing an aminated carbon nano-tube by using the carboxyl carbon nano-tube; (2) oxidizing the surface of nanometer silicon so as to generate a layer of silicon oxide, or aminating slightly oxidized nanometer silicon by using ammonia-containing organosilane under the condition of heating reflux; (3) adding the carboxyl carbon nano-tube and the aminated nanometer silicon, or the carboxyl carbon nano-tube and the slightly oxidized nanometer silicon to an organic carbon source-containing solvent, dispersing and carrying out spray drying-pyrolysis; (4) mixing a material obtained in the step (3) with asphalt, and sequentially carrying out low-temperature, constant temperature and high-temperature heat treatments, thus obtaining a secondary silicon-carbon nano-tube/amorphous carbon composite negative electrode material; and (5) carrying out airflow crushing, grading, adding to the organic carbon source-containing solvent, carrying out spray drying-pyrolysis or spray pyrolysis, and carrying out high-temperature treatment, thus obtaining the silicon/carbon multi-component composite negative electrode material. The silicon/carbon multi-component composite negative electrode material prepared by the method has the advantages of large reversible capacity, designable capacity, good cycle performance, high tap density and the like.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products