Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1338 results about "Esophagus" patented technology

The esophagus (American English) or oesophagus (British English; see spelling differences) (/ɪˈsɒfəɡəs/), commonly known as the food pipe or gullet, is an organ in vertebrates through which food passes, aided by peristaltic contractions, from the pharynx to the stomach. The esophagus is a fibromuscular tube, about 25 centimeters long in adults, which travels behind the trachea and heart, passes through the diaphragm and empties into the uppermost region of the stomach. During swallowing, the epiglottis tilts backwards to prevent food from going down the larynx and lungs. The word oesophagus is the Greek word οἰσοφάγος oisophagos, meaning "gullet".

Treatment of tissue in sphincters, sinuses and orifices

The invention provides a method and system for ablation of body structures or tissue in a sphincter, sinus or orifice such as the rectum, colon, esophagus, vagina, penis, larynx or pharynx. In one aspect of the invention, the environment surrounding the targeted ablation region can be isolated or controlled by blocking the flow of gases or liquids using an inflatable balloon positioned immediately adjacent to the tissue that is to be ablated. In a preferred embodiment, the inflatable balloon also serves to anchor the catheter in place and prevent the catheter from being expelled from the body. The inflatable balloon also insures that locally administered drug remain in the area where most needed. In a second aspect of the invention, positive pressure is used to inflate the balloon. Inflation of balloon triggers the extension of at least one curvilinear electrode into the targeted tissue. Negative pressure deflates the air sac and helps retract the curvilinear electrodes so as to allow the catheter to be removed from the body without damaging adjacent body structures. In a third aspect of the invention, the electrodes are coupled to sensors that measure properties of the target region such as temperature and impedance. Measurement of these properties permits the use of feedback technique to control delivery of the RF energy and administration of fluids for cooling and hydrating the affected tissues. In a fourth aspect of the invention, the catheter includes an optical path that can be coupled to external viewing apparatus. In this way, the position of the electrodes in the body can be determined by fluoroscopic or fiber optic techniques.
Owner:NOVASYS MEDICAL

Lung nodule detection and classification

A computer assisted method of detecting and classifying lung nodules within a set of CT images includes performing body contour, airway, lung and esophagus segmentation to identify the regions of the CT images in which to search for potential lung nodules. The lungs are processed to identify the left and right sides of the lungs and each side of the lung is divided into subregions including upper, middle and lower subregions and central, intermediate and peripheral subregions. The computer analyzes each of the lung regions to detect and identify a three-dimensional vessel tree representing the blood vessels at or near the mediastinum. The computer then detects objects that are attached to the lung wall or to the vessel tree to assure that these objects are not eliminated from consideration as potential nodules. Thereafter, the computer performs a pixel similarity analysis on the appropriate regions within the CT images to detect potential nodules and performs one or more expert analysis techniques using the features of the potential nodules to determine whether each of the potential nodules is or is not a lung nodule. Thereafter, the computer uses further features, such as speculation features, growth features, etc. in one or more expert analysis techniques to classify each detected nodule as being either benign or malignant. The computer then displays the detection and classification results to the radiologist to assist the radiologist in interpreting the CT exam for the patient.
Owner:RGT UNIV OF MICHIGAN

Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors

InactiveUS6974456B2ElectrotherapySurgical needlesGastric refluxSphincter
The present invention comprises a method of treating a sphincter that provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. Bioelectric activity causing a relaxation of the sphincter is detected and energy is delivered from either the mapping electrode or the treatment electrode to treat the bioelectric activity.
In another embodiment of the method of the invention, a method of treating a sphincter that provides a sphincter electropotential mapping device with at least one of a mapping electrode or a treatment electrode. The sphincter electropotential mapping device is introduced into at least a portion of the sphincter, the lower esophageal sphincter, stomach, the cardia or the fundus. The sphincter, lower esophageal sphincter, stomach, cardia or fundus is stimulated to produce a transient relaxation of the sphincter. The portion of the sphincter, lower esophageal sphincter, stomach, cardia or fundus causing a relaxation of the sphincter is indentified. Energy is delivered from the sphincter electropotential mapping device to treat the portion the sphincter, lower esophageal sphincter, stomach, cardia or fundus causing the transient relaxation of the sphincter.
Owner:MEDERI RF LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products