Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2882results about "Heart defibrillators" patented technology

Smart recognition apparatus and method

A qualifying connection for an instrument attaches to a source of electrosurgery energy to and the instrument and has first and second parts coupled to the instrument and the source, respectively. Optical couplings on the connection transmit invisible energy to identify the instrument and are proximate on the first and second parts. A light modifier on the first part is proximal to the second part for modification of radiation in the infrared wavelengths so infrared transmitters encode signals and non contact coded proximity detectors on the second part are the coupled detectors. Non contact coded proximity detectors respond to modified infrared light establishing an Nth bit identification code. An infrared light supply in the source pass from the transmitters across the communicating couplings for encoding signals by modification of the infrared light with a light modifier. Mechanical attachments include conjugating male and female portions physically extending between the parts for mating engagement. The attachments juxtaposition the parts when the attachments geometrically conjugate to geographically positioning the couplings proximate for communicating. The attachments have one or more conductors for delivery of high frequency energy from the source to the instrument. A cable fits between the first part of the connection and the instrument and has electrical conductors for carrying energy passing through the first part of the connection from the source to the instrument. An identifying circuit couples to the second part and responds to invisible light optically communicated across the couplings for verifying the type of instrument connected by the cable to the source.
Owner:COVIDIEN AG

Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment

An AED being powered by 120 / 240 VAC electrical power alone, being powered by external DC power alone, or any in combination with or without internal-integral battery power, and further an AED access service business method for sales of access to AEDs. The inventive AED, in addition to the defibrillator circuitry comprises a long, tangle free power access cord to be plugged into an external source of AC or DC power and optionally, additional sets of body surface and alternative electrodes positioned in the esophagus and / or heart. The AED has additional advanced capabilities including the ability to deliver rapid sequential shocks through one or more sets of patient electrodes, and the optional mode of shock delivery whereby the shock is delayed while the AED continues to analyze the patients ECG waveform and delays the defibrillation shock or sequence of shocks until the ECG analysis indicates conditions are optimum for successful defibrillation.
Owner:RAMSEY MAYNARD III

Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions

A method and apparatus are used to provide therapy to a patient experiencing ventricular dysfunction or heart failure. At least one electrode is located in a region associated with nervous tissue, such as nerve bundles T1-T4, in a patient's body. Electrical stimulation is applied to the at least one electrode to improve the cardiac efficiency of the patient's heart. One or more predetermined physiologic parameters of the patient are monitored, and the electrical stimulation is adjusted based on the one or more predetermined physiologic parameters.
Owner:MEDTRONIC INC

Wearable ambulatory medical device with multiple sensing electrodes

An ambulatory medical device including a plurality of electrodes configured to be disposed at spaced apart positions about a patient's body, an electrode signal acquisition circuit, and a monitoring circuit. The acquisition circuit has a plurality of inputs each electrically coupled to a respective electrode of the plurality of electrodes and is configured to sense a respective signal provided by a plurality of different pairings of the plurality of electrodes. The monitoring circuit is electrically coupled to an output of the acquisition circuit and is configured to analyze the respective signal provided by each of the plurality of different pairings and to instruct the acquisition circuit to select at least one of the plurality of different to pairings to monitor based on at least one of the quality of the respective signal, a phase difference between the respective signal and that of other pairings, a position of electrodes relative to the patient's body, and other criteria.
Owner:ZOLL MEDICAL CORPORATION

Wearable medical treatment device

At least one aspect is directed to a wearable treatment device that includes a cardiac sensing electrode, a treatment electrode, a user interface, and a sensor. The cardiac sensing electrode detects cardiac information, and the treatment electrode applies treatment to the subject. The user interface receives quality of life information from the subject, and the sensor detects subject activity and wellness information. A controller coupled with the cardiac sensing electrode, the treatment electrode, the user interface, and the sensor receives the detected cardiac information, the quality of life information, and the detected subject activity and wellness information, and determines that treatment is to be applied to the body of the subject based upon the detected cardiac information. The controller can also adjust the treatment based on at least one of the detected subject activity and wellness information and the quality of life information, and an alarm module provides an alarm after the cardiac information is detected and before the treatment is applied to the body of the subject.
Owner:ZOLL MEDICAL CORPORATION

Medical apparatus remote control and method

A system for providing medical treatment to a patient, including a medical treatment apparatus and a remote control device. The medical treatment apparatus has a local processor, and a local communication element connected to the local processor, while the remote control device includes a remote processor, user interface components connected to the remote processor, and a remote communication element connected to the remote processor and adapted to communicate with the local communication element of the medical treatment apparatus in a wireless manner such that information can be transferred between the local processor and the remote processor. The remote control device also includes at least two separate power supplies connected to the remote processor.
Owner:INSULET CORP

Apparatus for blocking activation of tissue or conduction of action potentials while other tissue is being therapeutically activated

A desired effect is produced by therapeutically activating tissue at a first site within a patient's body and a corresponding undesired side effect is reduced by blocking activation of tissue or conduction of action potentials at a second site within the patient's body by applying high frequency stimulation and / or direct current pulses at or near the second site. Time-varying DC pulses may be used before or after a high frequency blocking signal. The high frequency stimulation may begin before and continue during the therapeutic activation. The high frequency stimulation may begin with a relatively low amplitude, and the amplitude may be gradually increased. The desired effect may be promotion of micturition or defecation and the undesired side effect may be sphincter contraction. The desired effect may be defibrillation of the patient's atria or defibrillation of the patient's ventricles, and the undesired side effect may be pain.
Owner:MEDTRONIC INC

Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation

The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction.
Owner:MEDTRONIC INC

System and Method for Conditioning a Lithium Battery in an Automatic External Defibrillator

An inventive system and method de-passivates a direct current (DC) power source of an Automatic External Defibrillator (AED), such as an AED lithium battery. The system includes a main processor and standby processor. The standby processor monitors the age and usage of the battery. Based on the status of the monitored parameters, the system executes a conditioning discharge to remove a layer of salt crystals on the DC power source.
Owner:DEFIBTECH

Systems and methods for configuring a wearable medical monitoring and/or treatment device

A system including an ambulatory medical treatment device is provided. The ambulatory medical treatment device includes a memory, a treatment component configured to treat a patient, at least one processor coupled to the memory and the treatment component, a user interface component, and a system interface component. The user interface component is configured to receive an update session request and to generate the update session identifier responsive to receiving the request. The system interface component is configured to receive an encoded request including an identifier of an update session and device update information, to decode the encoded request to generate a decoded request including the device update information and the identifier of the update session, to validate the decoded request by determining that the update session identifier matches the identifier of the update session, and to apply the device update information to the ambulatory medical treatment device.
Owner:ZOLL MEDICAL CORPORATION

Method and system for locating a portable medical device

The invention provides a wireless automatic location identification (ALI) capable system (10), including a medical device (12) having a wireless data communicator (14), a wireless communication network (16), and a remote locating service (18) for remotely locating and monitoring one or more medical devices over the wireless communication network. When the medical device is linked to the remote locating service over the communication network, the ALI-capable system identifies the location of the medical device and relays the location information to the remote locating service. The system permits reliable determination of the location of the medical device wherever the medical device is situated. The medical device may further be configured to transmit signals indicative of its status, condition, or self-test results, to the remote locating service. This feature allows the remote locating service to centrally monitor the status or condition of a plurality of medical devices.
Owner:PHYSIO CONTROL INC

Patient-worn energy delivery apparatus

A patient-worn energy delivery apparatus for imparting electrical therapy to the body of a patient responsive to an occurrence of a treatable condition includes a voltage converter for converting electrical energy from an initial voltage to a final voltage, and a defibrillator electrically coupled between the converter and the patient and having an energy reservoir for receiving the electrical energy. The defibrillator produces preshaped electrical pulses such as defibrillation pulses and cardioversion pulses. The apparatus additionally includes an energy delivery controller electrically coupled to the patient and the converter and the defibrillator. The controller causes the converter to provide the electrical energy to the defibrillator at a specific charging rate in response to an energy level in the reservoir. The apparatus may include a plurality of electrodes interposed between the defibrillator and the patient and each electrode preferably has an impedance reducing means contained therein. One embodiment of the apparatus may include a H-bridge to produce a positive-going pulse segment and the negative-going pulse segment within the biphasic exponential signals. The apparatus periodically measures the energy as it is being delivered to the patient and can pre-emptively stop or truncate the pulse in the event an error condition is detected, such as an overvoltage condition or if the energy level approaches a predetermined level. The electrical components which store and release the energy minimize the size and expense of the apparatus, while isolating the microcomputer from the high energy levels as the therapeutic pulse is delivered.
Owner:ZOLL MEDICAL CORPORATION

Method and apparatus for shunting induced currents in an electrical lead

An electrical lead includes an elongate body having a proximal end portion and a distal end portion, a first electrode disposed adjacent and joined to the distal end portion of the elongate body. Current flow within the first electrode is limited when a predetermined condition occurs, such as the generation of an electromagnetic field having a predetermined frequency range. The medical electrical lead may further comprise one or more second electrodes disposed adjacent the first electrode and joined to the elongate body to shunt current to body tissue when the predetermined condition occurs.
Owner:MEDTRONIC INC

Implantable defibrillartor with wireless vascular stent electrodes

A cardiac defibrillator includes a fibrillation detector, which determines when a medical patient requires defibrillation at which time a transmitter produces a radio frequency signal. A first stent electrode is implanted into a blood vessel at a first location in the medical patient and a second stent electrode is implanted into a blood vessel at a second location. The first stent electrode contains an electronic circuit that is electrically connected to the second stent electrode. In response to receiving the radio frequency signal, the electronic circuit uses energy from that signal to apply an electric defibrillation pulse between the first and second stent electrodes.
Owner:KENERGY INC

Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers

An electro-stimulation device includes a pair of electrodes for connection to at least one location in the body that affects or regulates the heartbeat. The electro-stimulation device both electrically arrests the heartbeat and stimulates the heartbeat. A pair of electrodes are provided for connection to at least one location in the body that affects or regulates the heartbeat. The pair of electrodes may be connected to an intravenous catheter for transvenous stimulation of the appropriate nerve. A first switch is connected between a power supply and the electrodes for selectively supplying current from the power supply to the electrodes to augment any natural stimuli to the heart and thereby stop the heart from beating. A second switch is connected between the power supply and the electrodes for selectively supplying current from the power supply to the electrodes to provide an artificial stimulus to initiate heartbeating. In another aspect, the invention is directed to a method for arresting the beat of a heart in a living body comprising the steps of connecting the pair of electrodes to at least one location in the body that affects or regulates the heartbeat and supplying an electrical current to the electrodes of sufficient amplitude and duration to arrest the heartbeat. The device may also serve to still the lungs by input to a respirator or by stimulation of the phrenic nerve during surgical procedures.
Owner:MEDTRONIC INC

Implantable extravascular electrical stimulation lead having improved sensing and pacing capability

Implantable medical electrical leads having electrodes arranged such that a defibrillation coil electrode and a pace / sense electrode(s) are concurrently positioned substantially over the ventricle when implanted are described. The leads include an elongated lead body having a distal portion and a proximal end, a connector at the proximal end of the lead body, a defibrillation electrode located along the distal portion of the lead body, wherein the defibrillation electrode includes a first segment and a second segment proximal to the first segment by a distance, a first electrical conductor extending from the proximal end of the lead body and electrically coupling to the first segment and the second segment of the defibrillation electrode, and at least one pace / sense electrode located between the first segment and the second segment of the defibrillation electrode.
Owner:MEDTRONIC INC

System for cardiac resuscitation

A system and method for monitoring and controlling the therapy of a cardiac rhythm abnormality victim at a remote site by proving immediate access to a medical professional at a central station. The method comprises the steps of: (1) providing a plurality of electrodes for receiving cardiac signals generated by the victim and for the application of electrical pulses to the victim at a remote site; (2) transmitting the signals from the remote site to a central station; (3) receiving the signals at the central station and displaying them for the medical professional; (4) selecting whether to delivery defibrillation or pacing therapy to the victim based on the medical professional's analysis of the signals (5) transmitting the selection results to the remote site; and (6) receiving the selection results at the remote site and applying the selected therapy to the victim.
Owner:MATOS JEFFREY A

Water resistant wearable medical device

An accessory kit for use with a wearable medical device, such as a wearable defibrillator, that includes a control unit and a first plurality of electrodes electrically coupled to the control unit. The first plurality of electrodes includes a first plurality of ECG sensing electrodes and a first plurality of therapy electrodes configured to provide a defibrillating shock to a body of a patient. The accessory kit includes a waterproof enclosure configured to receive the control unit and protect the control unit during operation in a wet environment and a second plurality of electrodes that are electrically coupled to a connector configured to removably and electrically couple to the control unit. The second plurality of electrodes includes a second plurality of ECG sensing electrodes and a second plurality of therapy electrodes configured to provide a defibrillating shock to the body of the patient.
Owner:ZOLL MEDICAL CORPORATION

Telemetry duty cycle management system for an implantable medical device

A telemetry system enabling radio frequency (RF) communications between an implantable medical device and an external device, or programmer, in which the RF circuitry is normally maintained in a powered down state in order to conserve power. At synchronized wakeup intervals, one of the devices designated as a master device powers up its RF transmitter to request a communications session, and the other device designated as a slave device powers up its RF transmitter to listen for the request. Telemetry is conducted using a far field or near field communication link.
Owner:CARDIAC PACEMAKERS INC

Method and apparatus for renal neuromodulation

An apparatus for renal neuromodulation includes an expandable support member having a main body portion for engaging a wall of a blood vessel proximate a renal vasculature and at least one electrode connected with the main body portion. The at least one electrode is arranged to selectively deliver electric current to a desired location where modulation of the sympathetic nervous system is effective to alter renal function. The apparatus further includes an insulative material attached to at least a portion of the main body portion for isolating blood flow through the vessel from the electric current delivered by the at least one electrode.
Owner:THE CLEVELAND CLINIC FOUND

Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation

An abnormally rapid ventricular cardiac rate that results from atrial fibrillation can be reduced by stimulating a vagal nerve of the heart. An apparatus for such stimulation includes a power transmitter that emits a radio frequency signal. A stimulator, implanted in a blood vessel adjacent the vagal nerve, has a pair of electrodes and an electrical circuit thereon. The electrical circuit receives the radio frequency signal and derives an electrical voltage from the energy of that signal. The electrical voltage is applied in the form of pulses to the pair of electrodes, thereby stimulating the vagal nerve. The pattern of that stimulating pulses can be varied in response to characteristics of the atrial fibrillation or the ventricular contractions.
Owner:KENERGY INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products