Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2669 results about "Wireless data" patented technology

System and method for locating and communicating with personnel and equipment in a facility

This invention provides a system and method for identifying, locating, authorizing by proximity and communicating with equipment and personnel in a facility that generally employs a series of limited range transceivers for location determination and a distributed wireless data network for data transfer. The system employs unique RF transceiver tags on personnel and equipment that are each uniquely identified and registered with a facility control application that oversees activities in the facility. The tags are tracked by RF communication based upon their proximity to one or more fixed-base networked access points and relays (which transfer location data by RF back to access points) within four range zones. Location data on all tags is uploaded periodically to a location server that interfaces with the facility control server. Tag data is monitored by the facility control server to track, authorize and deauthorize certain data transfers, movements and activities in accordance with rules established for each tag (or type of tag) within the facility control server's application. Wireless networking (WiFi, for example), in combination with the RF-derived location information, allows the facility control server to correlate and transmit data to staff in conjunction with location and proximity. WiFi can transmit authorizations, deauthorizations and general data based upon triggers established by proximity and location. Likewise, data can be transmitted over WiFi from readers etc. from personnel and equipment located and identified by the system.

Internet-based method of and system for monitoring space-time coordinate information and biophysiological state information collected from an animate object along a course through the space-time continuum

An Internet-based method of and system for monitoring space-time coordinate information and biophysiological state information collected from an animate object moving along a course through the space-time continuum. The Internet-based system comprise a wireless GSU-enabled client network device affixed to the body of an animate object. The wireless device includes a global synchronization unit (GSU) for automatically generating time and space (TS) coordinate information corresponding to the time and space coordinate of the animate object with respect to a globally referenced coordinate system, as the animate object moves along a course through the space time continuum. The device also includes biophysiological state sensor affixed to the body of the animate object, for automatically sensing the biophysiological state of the animate object and generating biophysiological state information indicative of the sensed biophysiological state of the animate object along its course. The wireless device also includes a wireless date transmitter for transmitting the TS coordinate information and the biophysiological state information through free-space. A TS-stamping based tracking server receives the TS coordinate information and the biophysiological state information through in a wireless manner, and stores the same as the animate object moves along its course. An Internet information server serves Internet-based documents containing the collected TS coordinate and biophysiological state information. An Internet-enabled client system enables authorized persons to view the served Internet-based documents and monitor the collected TS coordinate and biophysiological state information, for various purposes.

In-vehicle device for wirelessly connecting a vehicle to the internet and for transacting e-commerce and e-business

An in-vehicle device data communicates with Internet based data processing resources for the purpose of transacting e-mail, e-commerce, and e-business. The in-vehicle device and the Internet based data processing resources can effectuate a wide variety of e-mail, e-commerce, and e-business including accessing auto part databases, warranty, customer, and other remote databases. In addition, e-mail, e-commerce, and e-business transactions can include vehicle security and vehicle service management, data communicating Internet based radio, audio, MP3, MPEG, video, and other types of data. Furthermore, e-mail, e-commerce, and e-business transactions can include interactive advertising, promotional offers, coupons, and supporting other remote data communications.
The in-vehicle device can also include functionality for remote monitoring of vehicle performance, data communicating and accessing remote Internet based content and data, and effectuating adjustments and control of vehicle operation. Remote monitoring and control of vehicle operation can be by way of an Internet based data processing resource and can include engine control system programming and setting adjustment, vehicle monitoring, and transmission of vehicle telemetry and metric data. Vehicle telemetry and metric data can include global positioning system (GPS) data, vehicle operational data, engine performance data, and other vehicle data.
The in-vehicle device can also wirelessly data communicate with a communication interface device (COM device) or an Internet appliance. Such COM devices or Internet appliances can data communicate wirelessly with an in-vehicle device and simultaneously data communicate in a wired or wireless mode of operation to Internet based data processing resources, and to other data processing resources.

Mobile Telephone Gateway Apparatus, Communication System, and Gateway Operating System

A mobile telephone gateway and communication routing device (MPG) (121) disclosed by the present invention is coupled through an electrical signaling transmission medium with a mobile telephone (100) operative on a first communication network in accordance with a first communication protocol, for adding communication capabilities through at least a second communication network in accordance with a second communication protocol. A mobile communication system (150) is disclosed, comprising MPG (121) placed in-between mobile phone (100) and battery (118) and Subscriber Identification Module (SIM) card (117). MPG connects to the SIM interface of mobile phone (100), using which it wraps SIM functionalities and controls call management. It connects to the data/signaling interface of mobile phone (100), using which it communicates with it, while communicating with the second network using another communication means. It may optionally connects to an accessory device interface of mobile phone (100) such as a Terminal Adapter/Terminal Equipment (TA/TE) or a USB OTG interface, thereby enabling communication between the mobile phone and wireless data terminals of the second network. In a preferred embodiment of the present invention, a MPG is provided for use with a mobile phone operative on a mobile communication network such as GSM, adding communication capabilities through a wireless communication network such as Bluetooth or Wi-Fi. Furthermore, gateway applications are provided to facilitate or support communication through at least the second network in accordance with mobile web protocols and technologies such as Mobile IP, mobile SIP, and mobile VoIP.

Telecommunications initiated data fulfillment system

A system for providing a wide range of telecommunications initiated data fulfillment services in which a multi-function code, such as “*#” (star, pound), input into an originating telecommunications device, such as a conventional land-line or wireless telephone, triggers the treatment of the input sequence as a multi-function code service request rather than a dialed directory number. The multi-function code is followed by an input data string to complete the multi-function code service request, which the user typically enters into the telecommunications device just like a conventional telephone call, except that the input string begins with the multi-function code. The telecommunications system recognizes the multi-function code as a trigger, and in response takes one or more actions, such as automatically terminating the call to an announcement and routing a data message to a data fulfillment center, which responds to the message by implementing a response action indicated by the multi-function code service request. For example, the data fulfillment center may respond by transmitting a message over a wireless data network or the Internet to implement a service, such as activation of a vending machine, remote control of device, delivery of a message over the Internet or wireless data network, initiation of an interactive Internet session with the originating device, or a wide range of other services. In addition, a charge for this service may be automatically charged to an account associated with the originating telecommunications device, which may be billed separately or incorporated on the user's conventional monthly telecommunications invoice.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products