Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

32975results about "Frequency-division multiplex details" patented technology

Method and apparatus for controlling transmissions of a communications systems

In some aspects, each cell in the communications system can be designed to operate in accordance with a set of back-off factors that identify the reductions in peak transmit power levels for the channels associated with the back-off factors. The back-off factors are defined to provide the required power to a large percentage of the users while reducing the amount of interference. In some other aspects, the cells operate using an adaptive reuse scheme that allows the cells to efficiently allocate and reallocate the system resources to reflect changes in the system. A reuse scheme is initially defined and resources are allocated to the cells. During operation, changes in the operating conditions of the system are detected and the reuse scheme is redefined as necessary based on the detected changes. For example, the loading conditions of the cells can be detected, and the resources can be reallocated and/or the reuse scheme can be redefined. In yet other aspects, techniques are provided to efficiency schedule data transmissions and to assign channels to users. Data transmissions can be scheduled based on user priorities, some fairness criteria, system requirements, and other factors. Users are assigned to available channels based on a number of channel assignment schemes. Channel metrics are also provided, which can be used to prioritize users and for channel assignments.

Band-changing repeater with protocol or format conversion

A repeater allows terminals of a first communications system, employing a first air protocol or radio interface, to communicate with terminals of a second communications system, employing a second air protocol or radio interface different from the first. Where the first and second air protocols differ only in operating frequency, but are otherwise compatible, the repeater may linearly translate signals from the first operating frequency to the second operating frequency, and vice versa, without demodulating and remodulating the signals. Where the air protocols differ in other ways, the repeater receives and demodulates signals from the first system, converts the signals to a common format, and remodulates and retransmits the signals according to the second air protocol (and vice versa), in the same frequency bands or in different frequency bands. The repeater translates control and signalling information transmitted in compliance with one air protocol to a format which complies with the other air protocol and has the same or equivalent effect. For each of the two communications system, the repeater emulates the functions of a terminal in that communications system, so that corresponding terminals in that system may communicate transparently with the repeater. The repeater provides a connection between the two emulated terminals, thereby allowing a terminal of the first system to use the repeater to communicate with an otherwise incompatible terminal of the second system.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products