Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

798 results about "TTEthernet" patented technology

The Time-Triggered Ethernet (SAE AS6802) standard defines a fault-tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks, and outlines mechanisms required for synchronous time-triggered packet switching for critical integrated applications, IMA and integrated modular architectures. SAE International has released SAE AS6802 in November 2011.

System and method for automated placement or configuration of equipment for obtaining desired network performance objectives and for security, RF tags, and bandwidth provisioning

A method is presented for determining optimal or preferred configuration settings for wireless or wired network equipment in order to obtain a desirable level of network performance. A site-specific network model is used with adaptive processing to perform efficient design and on-going management of network performance. The invention iteratively determines overall network performance and cost, and further iterates equipment settings, locations and orientations. Real time control is between a site-specific Computer Aided Design (CAD) software application and the physical components of the network allows the invention to display, store, and iteratively adapt any network to constantly varying traffic and interference conditions. Alarms provide rapid adaptation of network parameters, and alerts and preprogrammed network shutdown actions may be taken autonomously. A wireless post-it note device and network allows massive data such as book contents or hard drive memory to be accessed within a room by a wide bandwidth reader device, and this can further be interconnected to the internet or Ethernet backbone in order to provide worldwide access and remote retrieval to wireless post-it devices.

Nomadic translator or router

A nomadic router or translator enables a laptop computer or other portable terminal which is configured to be connected to a home network to be connected to any location on the internet or other digital data communication system. The router automatically and transparently re-configures the terminal to its new location and processes outgoing and incoming data. The router includes a processor which appears as the home network to the terminal, and appears as the terminal to the communication system. The terminal has a permanent address, the router has a router or translator address, and the terminal transmits outgoing data to the system including the permanent address as a source address. The processor translates the outgoing data by replacing the permanent address with the router address as the source address. The terminal receives incoming data from the system including the router address as a destination address, and the processor translates the incoming data by replacing the router address with the permanent address as the destination address. Alternatively, the terminal can be directly connected to a point on a local network, and the router connected to another point on the network. The router can be employed to implement numerous applications including nomadic e-mail, network file synchronizer, database synchronizer, instant network, nomadic internet and trade show router and can also be utilized as a fixed nomadic router.

Dynamic allocation of wireless mobile nodes over an internet protocol (IP) network

A method is described of automatically locating and connecting a mobile wireless communications device to a packet-switched network such as the Internet. An Internet Protocol (IP) packet from a terminal on the network, destined for receipt by the mobile device, is received at a home agent acting as a gateway or router linking the packet switched network to a second network, such as LAN, coupled to a wireless communications network. The home agent transmits an access-request message to an authentication server. The access-request message includes a destination IP address associated with the mobile device found in the IP packet. The authentication server responsively issues an access-accept message to the home agent if the mobile device is authorized to receive the IP packet. The access-accept message comprises (a) information uniquely identifying said device, such as the IMSI/ESN number for the device, and (b) information identifying a network to use to locate said device. The home agent issues a message containing the information uniquely identifying the device to a mobile node location server. The mobile node location server maintains a table mapping IP addresses for a plurality of mobile communication devices to information uniquely identifying the devices. In the event that the mobile node location server does not find an IP address for the device in the table, the device is paged via the wireless communications network. In response to the page, the mobile device dials into the wireless communications network and second network and initiates a connection to the packet switched network whereby the IP packet is transmitted to the device.

Method and apparatus for remotely monitoring a site

The present invention is directed to providing systems and methods for remotely monitoring sites to provide real time information which can readily permit false alarms to be distinguished, and which can identify and track the precise location of an alarm. In exemplary embodiments, monitoring capabilities such as intrusion/fire detection and tracking capabilities, can be implemented through the use of multistate indicators in a novel interface which permits information to be transmitted using standard network protocols from a remote site to a monitoring station in real-time over preexisting communication networks, such as the Internet. A wireless network can also be established using browser encapsulated communication programs (for example, active X control, Java applets, and so forth) to transmit data packets which comply with any standard wireless local area network protocol. Communications can thereby be established between a web server embedded in a centrally located host monitoring station and a separate security panel deployed in each of the buildings to be remotely monitored. In exemplary embodiments, communications can be handed off from the centrally located host monitoring station to a mobile monitoring station (for example, to a laptop computer in a responding vehicle, such as a police or fire vehicle). The handoff can be such that direct communications are established between a security panel site being monitored and the laptop, or over, for example, a cellular network or indirect communications can be established via the host monitoring station.

Telecommunications initiated data fulfillment system

A system for providing a wide range of telecommunications initiated data fulfillment services in which a multi-function code, such as “*#” (star, pound), input into an originating telecommunications device, such as a conventional land-line or wireless telephone, triggers the treatment of the input sequence as a multi-function code service request rather than a dialed directory number. The multi-function code is followed by an input data string to complete the multi-function code service request, which the user typically enters into the telecommunications device just like a conventional telephone call, except that the input string begins with the multi-function code. The telecommunications system recognizes the multi-function code as a trigger, and in response takes one or more actions, such as automatically terminating the call to an announcement and routing a data message to a data fulfillment center, which responds to the message by implementing a response action indicated by the multi-function code service request. For example, the data fulfillment center may respond by transmitting a message over a wireless data network or the Internet to implement a service, such as activation of a vending machine, remote control of device, delivery of a message over the Internet or wireless data network, initiation of an interactive Internet session with the originating device, or a wide range of other services. In addition, a charge for this service may be automatically charged to an account associated with the originating telecommunications device, which may be billed separately or incorporated on the user's conventional monthly telecommunications invoice.

System and method to support networking functions for mobile hosts that access multiple networks

An IP-based corporate network architecture and method for providing seamless secure mobile networking across office WLAN, home WLAN, public WLAN, and 2.5G/3G cellular networks for corporate wireless data users. The system includes Internet roaming clients (IRCs), a secure mobility gateway (SMG), optional secure IP access (SIA) gateways, and a virtual single account (VSA) server. The IRC is a special client tool installed on a mobile computer (laptop or PDA) equipped with a WLAN adaptor and a cellular modem. It is responsible for establishing and maintaining a mobile IPsec tunnel between the mobile computer and a corporate intranet. The SMG is a mobile IPsec gateway installed between the corporate intranet and the Internet. It works in conjunction with the IRC to maintain the mobile IPsec tunnel when the mobile computer is connected on the Internet via a home WLAN, a public WLAN, or a cellular network. The SIA gateway is a special IPsec gateway installed in the middle of the wired corporate intranet and an office WLAN. It works with the IRC to ensure data security and efficient use of corporate IP addresses when the mobile computer is connected to the office WLAN. The VSA server manages authentication credentials for every corporate user based on a virtual single account concept. The Internet Roaming system can provide secure, always-on office network connectivity for corporate users no matter where they are located using best available wireless networks.

Method and apparatus for prefetching internet resources based on estimated round trip time

A method and apparatus are disclosed for prefetching Internet resources based on the estimated round trip time of the resources. Whenever a user clicks on an embedded hyperlink, the prefetching strategy aims to ensure that the corresponding document has been prefetched or can be fetched very quickly from its origin server. Web access time as perceived by the user is reduced, while also minimizing the network, server and local resource overhead due to prefetching. The estimated round trip time is obtained or approximated for all referenced documents. The “round trip” time or access time of a resource is the time interval between the sending of the first byte of an HTTP request for the resource until the last byte of the server response has arrived at the requesting Web client. Documents with the longest access times are prefetched first and prefetching generally continues until the estimated round trip time falls below a predefined threshold. An HTTP HEAD request may be used to determine the estimated round trip time of a Web resource. The prefetching agent can be configured to prevent prefetching of those documents that are quickly fetchable, dynamically generated or non-HTTP based resources, or those documents whose size exceed a certain limit, to minimize the network, server and local resource overhead due to prefetching. The thresholds applied to the list of documents to be prefetched can be dynamically adjusted by the agent, based on changing network and server conditions.

Method of modulating the transmission frequency in a real time opinion research network

A computer-implemented transmission scheme is provided to control client-server interchanges within a distributed communications network, such as a real time opinion research system. Interchanges include transmitting media streams between one or more clients to a server over a computer network, including the global Internet. A polling management unit sets and manages the transmission mode that includes event-driven and periodic interchanges. Periodic interchanges can be simultaneously or staggeredly transmitted to a sampling pool of active clients. A transmission mode unit implements the transmission scheme set by the polling management unit. A parameter selector establishes the transmission interval and transmission period which are used to trigger each communication interchange. A client assignor creates one or more sampling classes from the sampling pool by applying a sampling quotient that is generated by the parameter selector. A schedule editor produces a transmission schedule for the active clients. If more than one sampling class has been created, each sampling class would receive a separate transmission schedule for providing staggered transmissions at designated transmission intervals. The transmission schedule can include other data preparation and formatting instructions for compression, aggregation and packetization.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products