Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1040 results about "Mobile wireless" patented technology

Dynamic allocation of wireless mobile nodes over an internet protocol (IP) network

A method is described of automatically locating and connecting a mobile wireless communications device to a packet-switched network such as the Internet. An Internet Protocol (IP) packet from a terminal on the network, destined for receipt by the mobile device, is received at a home agent acting as a gateway or router linking the packet switched network to a second network, such as LAN, coupled to a wireless communications network. The home agent transmits an access-request message to an authentication server. The access-request message includes a destination IP address associated with the mobile device found in the IP packet. The authentication server responsively issues an access-accept message to the home agent if the mobile device is authorized to receive the IP packet. The access-accept message comprises (a) information uniquely identifying said device, such as the IMSI/ESN number for the device, and (b) information identifying a network to use to locate said device. The home agent issues a message containing the information uniquely identifying the device to a mobile node location server. The mobile node location server maintains a table mapping IP addresses for a plurality of mobile communication devices to information uniquely identifying the devices. In the event that the mobile node location server does not find an IP address for the device in the table, the device is paged via the wireless communications network. In response to the page, the mobile device dials into the wireless communications network and second network and initiates a connection to the packet switched network whereby the IP packet is transmitted to the device.

Radius-based mobile internet protocol (IP) address-to-mobile identification number mapping for wireless communication

A method of finding a mobile wireless communications device when an Internet Protocol (IP) packet from a remote user is sent to the device over an IP network. The mobile device does not have to register with the IP network in order to receive the IP. The method comprises the steps of receiving the IP packet at a home agent associated with a wireless communications network. The IP packet includes an IP address assigned to the device. If there is no current mobility binding record for the mobile device, instead of dropping the packet the home agent sends an access-request packet, containing the IP address, to an authentication server. The authentication server, e.g., a RADIUS server, maintains a table mapping the IP address for the device to an identification number uniquely associated with the device, such as the device's International Mobile Subscriber Identity number. The authentication server sends an access-accept packet to the home agent in the event that the device is authorized to receive the IP packet, in which case the access-accept packet includes the identification information. The home agent uses the identification number to locate, page and automatically connect the wireless device to the IP network via an InterWorking Unit (IWU) configured as a IP network access server.

Dual map system for navigation and wireless communication

A system produces of an empirical map of wireless communication coverage through a process of combining information from individual clients to produce a map which is then shared by all of the clients. The wireless coverage map aids in maintaining a reliable communications link. The empirical map is generated by combining information from a group of mobile wireless users. The group may consist of a fleet of trucks, taxicabs, government service vehicles, or the customers of a wireless service provider. The mobile vehicles must be equipped with a GPS device or be located by other means such as triangulation. While vehicles are moving, the quality of wireless communication, e.g., signal strength or communication continuity, is recorded for each vehicle as a function of positions. The data from all of the vehicles is combined to produce the empirical map. The empirical map may be maintained at a central site and subsets of the map replicated for individual vehicles. The map may then be used to direct mobile users to sites of superior communications reliability, warn mobile users when they are out of the service area or are about to leave the service area, or to regulate data communications automatically to stop and restart communications as a mobile vehicle passes through a gap in coverage.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products