Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

188results about How to "Efficient energy transfer" patented technology

Wireless energy transfer systems

Described herein are improved capabilities for a source resonator having a Q-factor Q1>100 and a characteristic size x1 coupled to an energy source, and a second resonator having a Q-factor Q2>100 and a characteristic size x2 coupled to an energy drain located a distance D from the source resonator, where the source resonator and the second resonator are coupled to exchange energy wirelessly among the source resonator and the second resonator.
Owner:WITRICITY CORP

Wireless energy transfer systems

Described herein are improved capabilities for a source resonator having a Q-factor Q1>100 and a characteristic size x1 coupled to an energy source, and a second resonator having a Q-factor Q2>100 and a characteristic size x2 coupled to an energy drain located a distance D from the source resonator, where the source resonator and the second resonator are coupled to exchange energy wirelessly among the source resonator and the second resonator.
Owner:WITRICITY CORP

Tunable wireless energy transfer for in-vehicle applications

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with an electrically powered system that is disposed interior to a vehicle, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Multi-resonator wireless energy transfer to mobile devices

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with a mobile device such that the load delivers electrical energy to the mobile device, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY CORP

Wireless power transfer within a circuit breaker

A wireless power service panel source includes power and control circuitry that receives power from a wired power connection at a position in a service panel, and generates an electronic drive signal at a frequency, f, and a source magnetic resonator configured to generate an oscillating magnetic field in response to the electronic drive signal, wherein the source magnetic resonator is configured to wirelessly transmit power to sensors in other positions within the service panel.
Owner:WITRICITY CORP

Wireless energy transfer using field shaping to reduce loss

In embodiments of the present invention improved capabilities are described for a method and system comprising a source resonator optionally coupled to an energy source and a second resonator located a distance from the source resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator and where the field of at least one of the source resonator and the second resonator is shaped to avoid a loss-inducing object.
Owner:WITRICITY CORP

Wireless energy transfer with variable size resonators for medical applications

A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power an implantable medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, the area circumscribed by the inductive element of at least one of the electromagnetic resonators can be varied to improve performance.
Owner:WITRICITY CORP

Wireless energy transfer with resonator arrays for medical applications

A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes, a load configured to power an implantable medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, at least one other electromagnetic resonator configured with the first electromagnetic resonator and the second electromagnetic resonator in an array of electromagnetic resonators to distribute power over an area, and wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
Owner:WITRICITY CORP

Tunable wireless energy transfer for medical applications

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with powering an electrically powered medical device, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Wireless energy transfer for vehicles

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein at least one of the first electromagnetic resonator and the second electromagnetic resonator is variable in size, and wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator.
Owner:WITRICITY CORP

Wireless energy transfer for vehicles

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and wherein the field of at least one of the first electromagnetic resonator and the second electromagnetic resonator is shaped using a conducting surface to avoid a loss-inducing object.
Owner:WITRICITY

Wireless energy transfer using repeater resonators

A bag for wireless energy transfer comprising a compartment for storing an electronic device enabled for wireless energy transfer, and at least one magnetic resonator positioned for wireless energy transfer to the electronic device, wherein a the at least one magnetic resonator optionally operates in one of three modes: (1) as a repeater resonator to extend the energy transfer to the electronic device from an external wireless energy source, (2) as a source resonator transferring energy from a battery in the bag to the electronic device, and (3) as an energy capture resonator receiving wireless energy from an external source to recharge a battery in the bag.
Owner:WITRICITY CORP

Wireless energy transfer using repeater resonators

Described herein are improved configurations for a device for wireless power transfer that includes a conductor forming at least one loop of a high-Q resonator, a capacitive part electrically coupled to the conductor, and a power and control circuit electrically coupled to the conductor, the power and control circuit providing two or more modes of operation and the power and control circuit selecting how the high-Q resonator receives and generates an oscillating magnetic field.
Owner:WITRICITY CORP

Wireless energy transfer for vehicles

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver includes a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the frequency of at least one electromagnetic resonator is selected to prevent transfer of power to unauthorized devices.
Owner:WITRICITY CORP

Wireless energy transfer with variable size resonators for implanted medical devices

A medical device-powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver including a load is configured to power the medical device using electrical power, and a second electromagnetic resonator adapted to be housed within the medical device and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, the area circumscribed by the inductive element of at least one of the electromagnetic resonators can be varied to improve performance.
Owner:WITRICITY CORP

Secure wireless energy transfer for vehicle applications

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load configured to power the drive system of a vehicle using electrical power, a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator; and an authorization facility to confirm compatibility of the resonators and provide authorization for initiation of transfer of power.
Owner:WITRICITY CORP

Tunable wireless energy transfer for sensors

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes, a load associated with a sensor and configured to power a sensor, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Multi-resonator wireless energy transfer for implanted medical devices

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with electrically powering a medical device that is adapted to be disposed in the interior of a patient, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY CORP

Safety systems for wireless energy transfer in vehicle applications

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver including a load configured to power the drive system of a vehicle using electrical power, a second electromagnetic resonator adapted to be housed upon the vehicle and configured to be coupled to the load, a safety system for to provide protection with respect to an object that may become hot during operation of the first electromagnetic resonator. The safety system including a detection subsystem configured to detect the presence of the object in substantial proximity to at least one of the resonators, and a notification subsystem operatively coupled to the detection subsystem and configured to provide an indication of the object, wherein the second resonator is configured to be wirelessly coupled to the first resonator to provide resonant, non-radiative wireless power to the second resonator from the first resonator.
Owner:WITRICITY CORP

Multi-resonator wireless energy transfer for lighting

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with a movable lighting unit, the load adapted to provide electrical energy to the lighting unit, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY

Wireless energy transfer for vehicles

A vehicle powering wireless receiver for use with a first electromagnetic resonator coupled to a power supply. The wireless receiver including a load configured to power the drive system of a vehicle using electrical power, and a second electromagnetic resonator adapted to be housed upon the vehicle configured to be coupled to the load, wherein the second electromagnetic resonator is moveable relative to the first electromagnetic resonator while power is transferred, the second electromagnetic resonator configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and a second electromagnetic resonator adapted to be housed upon the vehicle and comprising an inductive loop and configured to be coupled to the load via a capacitive network comprising at least one capacitor in series with the inductive loop and one capacitor in parallel with the inductive loop.
Owner:WITRICITY CORP

Wireless energy transfer systems

A wireless power transfer system for computer peripherals, includes a source magnetic resonator, integrated into a source station and connected to a power source and power and control circuitry, and a device magnetic resonator, integrated into a computer peripheral wherein power is transferred non-radiatively from the source magnetic resonator to the device magnetic resonator, and wherein the source magnetic resonator is configured to transfer power during predefined intervals.
Owner:WITRICITY CORP

Multi-resonator wireless energy transfer inside vehicles

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with an electrically powered system that is disposed interior to a vehicle, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY CORP

Integrated repeaters for cell phone applications

A wireless power receiving system for a mobile electronic device that includes a high-Q repeater resonator comprising at least an inductor and a capacitor and having a Q-factor Q1. The inductor of the repeater resonator is enclosed in a removable sleeve of the mobile electronic. The system also includes a high-Q device resonator comprising at least an inductor and a capacitor and having a Q-factor Q2. The device resonator is integrated in the mobile device and electrically connected to the mobile electronic device, and the square root of the product Q1 and Q2 is greater than 100.
Owner:WITRICITY

Temperature compensation in a wireless transfer system

Described herein are improved configurations for a resonator for wireless power transfer that includes a conductor forming one or more loops and having an inductance L, a network of capacitors, having a capacitance, C, and a desired electrical parameter, coupled to the conductor, the network having at least one capacitor of a first type with a first temperature profile of the electrical parameter, and the network having at least one capacitor of a second type with a second temperature profile of the electrical parameter.
Owner:WITRICITY CORP

Wireless energy transfer with high-q resonators using field shaping to improve k

In embodiments of the present invention improved capabilities are described for a method and system comprising a source resonator optionally coupled to an energy source and a second resonator located a distance from the source resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator and where the field of at least one of the source resonator and the second resonator is shaped to avoid a loss-inducing object.
Owner:WITRICITY

Multi-resonator wireless energy transfer for appliances

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with electrically powering an appliance, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
Owner:WITRICITY CORP

Wireless energy transfer using magnetic materials to shape field and reduce loss

In embodiments of the present invention improved capabilities are described for a method and system comprising a source resonator optionally coupled to an energy source and a second resonator located a distance from the source resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator and where the field of at least one of the source resonator and the second resonator is shaped using a magnetic material to avoid a loss-inducing object.
Owner:WITRICITY CORP

Wireless energy transfer using conducting surfaces to shape fields and reduce loss

In embodiments of the present invention improved capabilities are described for a method and system comprising a source resonator optionally coupled to an energy source and a second resonator located a distance from the source resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator and where the field of at least one of the source resonator and the second resonator is shaped using a conducting surface to avoid a loss-inducing object.
Owner:WITRICITY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products