Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

26748 results about "Audio frequency" patented technology

An audio frequency (abbreviation: AF) or audible frequency is a periodic vibration whose frequency is in the band audible to the average human. The SI unit of audio frequency is the hertz (Hz). It is the property of sound that most determines pitch.

System and methods for recognizing sound and music signals in high noise and distortion

A method for recognizing an audio sample locates an audio file that most closely matches the audio sample from a database indexing a large set of original recordings. Each indexed audio file is represented in the database index by a set of landmark timepoints and associated fingerprints. Landmarks occur at reproducible locations within the file, while fingerprints represent features of the signal at or near the landmark timepoints. To perform recognition, landmarks and fingerprints are computed for the unknown sample and used to retrieve matching fingerprints from the database. For each file containing matching fingerprints, the landmarks are compared with landmarks of the sample at which the same fingerprints were computed. If a large number of corresponding landmarks are linearly related, i.e., if equivalent fingerprints of the sample and retrieved file have the same time evolution, then the file is identified with the sample. The method can be used for any type of sound or music, and is particularly effective for audio signals subject to linear and nonlinear distortion such as background noise, compression artifacts, or transmission dropouts. The sample can be identified in a time proportional to the logarithm of the number of entries in the database; given sufficient computational power, recognition can be performed in nearly real time as the sound is being sampled.

Data processing system and method

A powerful, scaleable, and reconfigurable image processing system and method of processing data therein is described. This general purpose, reconfigurable engine with toroidal topology, distributed memory, and wide bandwidth I/O are capable of solving real applications at real-time speeds. The reconfigurable image processing system can be optimized to efficiently perform specialized computations, such as real-time video and audio processing. This reconfigurable image processing system provides high performance via high computational density, high memory bandwidth, and high I/O bandwidth. Generally, the reconfigurable image processing system and its control structure include a homogeneous array of 16 field programmable gate arrays (FPGA) and 16 static random access memories (SRAM) arranged in a partial torus configuration. The reconfigurable image processing system also includes a PCI bus interface chip, a clock control chip, and a datapath chip. It can be implemented in a single board. It receives data from its external environment, computes correspondence, and uses the results of the correspondence computations for various post-processing industrial applications. The reconfigurable image processing system determines correspondence by using non-parametric local transforms followed by correlation. These non-parametric local transforms include the census and rank transforms. Other embodiments involve a combination of correspondence, rectification, a left-right consistency check, and the application of an interest operator.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products