Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

19251 results about "Network communication" patented technology

Secure interactive electronic account statement delivery system

The present invention consists of a secure interactive electronic account statement delivery system suitable for use over open networks such as the Internet. The invention utilizes a certification hierarchy to insure that electronic bills, invoices, and other account statements can be securely sent over open networks. The participants in the system are a certification authority, certificated banks, billers, and customers. The certification authority grants digital certificates to the certificated banks, which in turn grant digital certificates to billers and customers. Digital certificates form the basis for encryption and authentication of network communications, using public and private keys. The certificates associate a customer and biller with a certificated bank and with the electronic billing system, much like payment cards associate a customer with a payment card issuer and a particular payment card system. Digital signatures are used for authentication and non-repudiation. The certificates may be stored as digital data on storage media of a customer's or biller's computer system, or may be contained in integrated circuit or chip cards physically issued to billers and customers. The electronic bill itself may be a simple text message containing the equivalent of summary information for the bill, or may be more elaborate. In one embodiment of the invention, the electronic bill contains a number of embedded links, for example an embedded URL of a biller's world wide web server that allows the customer to interactively bring up detailed billing information by activating the link. The e-mail message may also include links to third party websites.
Owner:VISA INT SERVICE ASSOC

Retrofit LED lamp for fluorescent fixtures without ballast

An energy saving device for an LED lamp mounted to an existing fixture for a fluorescent lamp where the ballast is removed or bypassed. The LEDs are positioned within a tube and electrical power is delivered from a power source to the LEDs. The LED lamp includes means for controlling the delivery of the electrical power from the power source to the LEDs, wherein the use of electrical power can be reduced or eliminated automatically during periods of non-use. Such means for controlling includes means for detecting the level of daylight in the illumination area of said least one LED, in particular a light level photosensor, and means for transmitting to the means for controlling relating to the detected level of daylight from the photosensor. The photosensor can be used in operative association with an on-off switch in power connection to the LEDs, a timer, or with a computer or logic gate array in operative association with a switch, timer, or dimmer that regulates the power to the LEDs. An occupancy sensor that detects motion or a person in the illumination area of the LEDs can be also be used in association with the photosensor and the computer, switch, timer, or dimmer, or in solo operation by itself. Two or more such LED lamps with a computer or logic gate array used with at least one of the lamps can be in network communication with at least one photosensor and/or at least one occupancy sensor to control the power to all the LEDs.
Owner:SIGNIFY HLDG BV

Service-based compression of content within a network communication system

A service module incorporated within the network infrastructure intercepts packets communicated between a client and a server to determine whether the connection corresponds to an email service. If so, the service module breaks the connection by terminating the connection with the client at the service module and opening a separate connection between the service module and the server. Packets communicated between the client and the server may then be redirected to an email compression application that monitors messages communicated between the client and the server and processes the messages in accordance with the state of the email session. For messages corresponding to connection establishment, user authentication and other protocol-specific messages, for example, the email compression application may be configured to forward the messages to the originally intended destination. Messages corresponding to an email message data, however, are buffered within the email compression application. Once the entire message has been received, the email compression application may strip the message headers and any protocol-specific data, compress the data and attach new message headers corresponding to the compressed email message. The compressed and reformatted email message is then reinserted into the data stream for transmission to the intended destination. Because compression may occur between the server and client, compression may be performed without requiring special processing by the server before email messages are sent. Furthermore, because the email messages may be compressed in a format that can be readily decompressed using decompression libraries incorporated within the operating system of client devices, such as the CAB format or GZIP format, the client may decompress received email messages utilizing software already incorporated within the operating system of the client device, without requiring download or installation of special decompression software and/or coordination of compression/decompression of email messages with the server or sending party.
Owner:OPTIMORPHIX INC

Retrofit LED lamp for fluorescent fixtures without ballast

An energy saving device for an LED lamp mounted to an existing fixture for a fluorescent lamp where the ballast is removed or bypassed. The LEDs are positioned within a tube and electrical power is delivered from a power source to the LEDs. The LED lamp includes means for controlling the delivery of the electrical power from the power source to the LEDs, wherein the use of electrical power can be reduced or eliminated automatically during periods of non-use. Such means for controlling includes means for detecting the level of daylight in the illumination area of said least one LED, in particular a light level photosensor, and means for transmitting to the means for controlling relating to the detected level of daylight from the photosensor. The photosensor can be used in operative association with an on-off switch in power connection to the LEDs, a timer, or with a computer or logic gate array in operative association with a switch, timer, or dimmer that regulates the power to the LEDs. An occupancy sensor that detects motion or a person in the illumination area of the LEDs can be also be used in association with the photosensor and the computer, switch, timer, or dimmer, or in solo operation by itself. Two or more such LED lamps with a computer or logic gate array used with at least one of the lamps can be in network communication with at least one photosensor and / or at least one occupancy sensor to control the power to all the LEDs.
Owner:SIGNIFY HLDG BV

System and method of user authentication for network communication through a policy agent

A policy agent of a network performs an out-of-band user authentication process to verify the identity of a user of a client computer and associates the network data received from the client computer with the user. When the client computer initiates a network data connection to or through the policy agent, the policy agent sends an encrypted challenge to the client computer. The challenge is encrypted with a private key of the policy agent. When the client computer receives the challenge, it decrypts the challenge and prepares a message digest value based on the challenge and the network data sent by the user. The message digest value is then encrypted with the private key of the user to form a response, and the response is sent to the policy agent. The policy agent decrypts the response with the public key of the user to obtain the message digest value and calculates a digest value based on the challenge and the received network data. The policy agent then compares the calculated digest value with the decrypted digest value. A match between the two digest values indicates that the user is successfully authenticated and that the received network data are associated with the user. The policy agent may then apply network policies based on the credentials of the authenticated user.
Owner:MICROSOFT TECH LICENSING LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products