Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

8151 results about "Network communication" patented technology

Secure interactive electronic account statement delivery system

The present invention consists of a secure interactive electronic account statement delivery system suitable for use over open networks such as the Internet. The invention utilizes a certification hierarchy to insure that electronic bills, invoices, and other account statements can be securely sent over open networks. The participants in the system are a certification authority, certificated banks, billers, and customers. The certification authority grants digital certificates to the certificated banks, which in turn grant digital certificates to billers and customers. Digital certificates form the basis for encryption and authentication of network communications, using public and private keys. The certificates associate a customer and biller with a certificated bank and with the electronic billing system, much like payment cards associate a customer with a payment card issuer and a particular payment card system. Digital signatures are used for authentication and non-repudiation. The certificates may be stored as digital data on storage media of a customer's or biller's computer system, or may be contained in integrated circuit or chip cards physically issued to billers and customers. The electronic bill itself may be a simple text message containing the equivalent of summary information for the bill, or may be more elaborate. In one embodiment of the invention, the electronic bill contains a number of embedded links, for example an embedded URL of a biller's world wide web server that allows the customer to interactively bring up detailed billing information by activating the link. The e-mail message may also include links to third party websites.
Owner:VISA INT SERVICE ASSOC

Retrofit LED lamp for fluorescent fixtures without ballast

An energy saving device for an LED lamp mounted to an existing fixture for a fluorescent lamp where the ballast is removed or bypassed. The LEDs are positioned within a tube and electrical power is delivered from a power source to the LEDs. The LED lamp includes means for controlling the delivery of the electrical power from the power source to the LEDs, wherein the use of electrical power can be reduced or eliminated automatically during periods of non-use. Such means for controlling includes means for detecting the level of daylight in the illumination area of said least one LED, in particular a light level photosensor, and means for transmitting to the means for controlling relating to the detected level of daylight from the photosensor. The photosensor can be used in operative association with an on-off switch in power connection to the LEDs, a timer, or with a computer or logic gate array in operative association with a switch, timer, or dimmer that regulates the power to the LEDs. An occupancy sensor that detects motion or a person in the illumination area of the LEDs can be also be used in association with the photosensor and the computer, switch, timer, or dimmer, or in solo operation by itself. Two or more such LED lamps with a computer or logic gate array used with at least one of the lamps can be in network communication with at least one photosensor and/or at least one occupancy sensor to control the power to all the LEDs.
Owner:SIGNIFY HLDG BV

Service-based compression of content within a network communication system

A service module incorporated within the network infrastructure intercepts packets communicated between a client and a server to determine whether the connection corresponds to an email service. If so, the service module breaks the connection by terminating the connection with the client at the service module and opening a separate connection between the service module and the server. Packets communicated between the client and the server may then be redirected to an email compression application that monitors messages communicated between the client and the server and processes the messages in accordance with the state of the email session. For messages corresponding to connection establishment, user authentication and other protocol-specific messages, for example, the email compression application may be configured to forward the messages to the originally intended destination. Messages corresponding to an email message data, however, are buffered within the email compression application. Once the entire message has been received, the email compression application may strip the message headers and any protocol-specific data, compress the data and attach new message headers corresponding to the compressed email message. The compressed and reformatted email message is then reinserted into the data stream for transmission to the intended destination. Because compression may occur between the server and client, compression may be performed without requiring special processing by the server before email messages are sent. Furthermore, because the email messages may be compressed in a format that can be readily decompressed using decompression libraries incorporated within the operating system of client devices, such as the CAB format or GZIP format, the client may decompress received email messages utilizing software already incorporated within the operating system of the client device, without requiring download or installation of special decompression software and/or coordination of compression/decompression of email messages with the server or sending party.
Owner:OPTIMORPHIX INC

System and method of user authentication for network communication through a policy agent

A policy agent of a network performs an out-of-band user authentication process to verify the identity of a user of a client computer and associates the network data received from the client computer with the user. When the client computer initiates a network data connection to or through the policy agent, the policy agent sends an encrypted challenge to the client computer. The challenge is encrypted with a private key of the policy agent. When the client computer receives the challenge, it decrypts the challenge and prepares a message digest value based on the challenge and the network data sent by the user. The message digest value is then encrypted with the private key of the user to form a response, and the response is sent to the policy agent. The policy agent decrypts the response with the public key of the user to obtain the message digest value and calculates a digest value based on the challenge and the received network data. The policy agent then compares the calculated digest value with the decrypted digest value. A match between the two digest values indicates that the user is successfully authenticated and that the received network data are associated with the user. The policy agent may then apply network policies based on the credentials of the authenticated user.
Owner:MICROSOFT TECH LICENSING LLC

Private multimedia network

Private Multimedia Network (PMN) complements, and is an improved alternative to digital videoconferencing and multimedia delivery systems. PMN's desktop and meeting room delivery system is designed to support the exponential growth of enterprise team-based initiatives. PMN provides “one-stop-shopping” for the full multimedia rubric. It delivers user-friendly control and cost/effective TV and broadcast quality videoconferencing and other multimedia services to organizations with “critical mass” campuses and building complexes. Though digital systems dominate the videoconferencing marketplace, PMN's hybrid digital/analog architecture has no digital peer in breadth or quality of service within or between campuses. The novel architecture leverages advances in analog video short-haul technology, digital long-haul technology, and telephony audio and control technology to deliver four-level multimedia services: 1) premise; 2) campus; 3) multi-site; and 4) ubiquitous (any site with ITU compatible multimedia equipment (e.g., videoconferencing) and communication links). On balance, the price/performance afforded by PMN's centralized Telco-based control and audio delivery combined with its decentralized broadcast quality video distribution raise videoconferencing and other multimedia services to a new level of ubiquity. Just as telephones and PC LANs, PMN delivers expensive Boardroom and mobile cart videoconferencing capabilities to every desktop via existing multimedia wall plates. The key phases for this invention are: Lip-synchronization across differing network communication links and protocols; Ubiquitous multimedia service; Cost/effective room and desktop deployment; Telco control and audio; Broadcast quality video; Isochronous Quality; Centralized control and distributed operation; and Interoperable architecture.
Owner:SORRELL JOHN D

Secure sockets layer proxy architecture

A method for secure communications between a client and one of a plurality of servers performed on an intermediary device coupled to the client and said plurality of servers. In one aspect, the method comprises: establishing an open communications session between the intermediary device and the client via an open network; negotiating a secure communications session with the client; establishing an open communications session with said one of said plurality of servers via a secure network; receiving encrypted data from the client via the secure communications session; decrypting encrypted application data; forwarding decrypted application data to the server via the secure network; receiving application data from the server via the secure network; encrypting the application data; and sending encrypted application data to the client. In a further aspect, an apparatus including a network interface communicating with the public network and the secure network at least one processor, programmable dynamic memory addressable by the processor, and a communications channel coupling the processor, memory and the network communications interface is provided. The apparatus further includes a proxy TCP communications engine, a proxy SSL communications engine, a server TCP communications engine; and a packet data encryption and decryption engine.
Owner:NEXSI SYST

Fault tolerant shared system resource with communications passthrough providing high availability communications

A communications passthrough mechanism for high availability network communications between a shared system resource and clients of the system resource. The system resource includes a control/processing sub-system including multiple peer blade processors. A port of each blade processor is connected to each client/server network path and each client is connected to a corresponding port of each blade processor. Each blade processor includes a network fault detector exchanging beacon transmissions with other blade processors through corresponding blade processor ports and network paths. Each blade processor includes response generator responsive to a failure to receive a beacon transmission from a failed port of an other blade processor for redirecting the client communications to the failed port on the other blade processor to the corresponding port of the blade processor. A path manager in the blade processor is responsive to operation of the response generator for modifying the communications routing table to correspond with the redirection message to route the client communications to the failed port of the other blade processor to the other blade processor through the inter-processor communications link. Each blade processor may also include an inter-blade communications monitor for detecting a failure in the inter-processor communications link between the blade processor and another blade processor, reading the communications routing table to select a functional network communications path to a port of the other blade processor, and modifying the communications routing table to redirect inter-processor communications to the selected functional network communications path.
Owner:EMC CORP

Power controls with photosensor for tube mounted LEDs with ballast

A power saving device for a light emitting diode (LED) lamp mounted to an existing fixture for a fluorescent lamp having a ballast assembly and LEDs positioned within a tube and electrical power delivered from the ballast assembly to the LEDs. The LED lamp includes means for controlling the delivery of the electrical power from the ballast assembly to the LEDs wherein the use of electrical power can be reduced or eliminated automatically during periods of non-use. Such means for controlling include means for detecting the level of daylight in the illumination area of said least one LED in particular a light level photosensor and means for transmitting to the means for controlling a control signal relating to the detected level of daylight from the photosensor. The photosensor can be used in operative association with an on-off switch in power connection to the LEDs, or with a computer or logic gate array in operative association with a dimmer that controls the power to the LEDs. An occupancy sensor that detects motion or a person in the illumination area of the LEDs can be optionally used in association with the photosensor and the computer and dimmer. Two or more such LED lamps with one or more computers or logic gate arrays can be in network communication with the photosensors and the occupancy sensors to control the power to the LEDs.
Owner:SIGNIFY HLDG BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products