Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

75 results about "Hydration status" patented technology

Hydration status refers to body fluid levels. euhydration the normal state of body water content (typically about 40 litres).hypohydration reduced total body water which may develop by the process of dehydration due to excessive sweating under exercise heat stress. Athletes may lose 2-6% body weight during prolonged exercise. Hypohydration is detrimental to both exercise performance and health ...

Polyelectrolyte Material, Polyelectrolyte Component, Membrane Electrode Composite Body, and Polyelectrolyte Type Fuel Cell

The present invention is to provide a polymer electrolyte material realizing excellent proton conductivity even when it comes into direct contact with liquid fuel at high temperature and high concentration, and excellent fuel barrier property and mechanical strength, as well as to provide a polymer electrolyte fuel cell of high efficiency. A polymer electrolyte material of the present invention is characterized in that fraction Rw of non-freezing water shown by the equation (S1) below is 75 to 100% by weight, and an ionic group is included, in a moisture state taken out after 12-hour immersion in 1 to 30% by weight methanol aqueous solution at 40 to 80° C. and then 24-hour immersion in pure water at 20°:
Rw=[Wnf/(Wfc+Wnf)]×100  (S1)
(wherein, Wnf represents an amount of non-freezing water per 1 g of dry weight of polymer electrolyte material, Wfc represents an amount of lower-melting point water per 1 g of dry weight of polymer electrolyte material). A polymer electrolyte part of the present invention is characterized by being made from such a polymer electrolyte material, a membrane electrode assembly of the present invention is characterized by being made from such a polymer electrolyte part, and a polymer electrolyte fuel cell of the present invention is formed by using by being made from such a membrane electrode assembly.
Owner:TORAY IND INC

Method For Detecting Physiology At Distance Or During Movement For Mobile Devices, Illumination, Security, Occupancy Sensors, And Wearables

InactiveUS20150148624A1Implementation more simply and inexpensivelyDiagnostics using lightDiagnostics using spectroscopyConfocalOxygenated Hemoglobin
An improved sensor (102) for physiology monitoring in mobile devices, wearables, security, illumination, photography, and other devices and systems uses broadband light (114) transmitted to a target (125) such as the ear, face, or wrist of a living subject. Some of the scattered light returning from the target to detector (141) is passed through narrowband spectral filter set (155) to produce multiple detector regions, each sensitive to a different wavelength range. Data from the detected light is spectrally analyzed to computationally partition the analyzed data into more than one compartment of different temporal or physiological characteristics (such as arterial bloodstream, venous bloodstream, skin surface, and tissue), and into more than one component compound (such as oxygenated hemoglobin, water, and fat), allowing a measure of physiology of the subject to localized to one compartment, thereby reducing the effects of body motion, body position, and sensor movement that can be localized to other physiological compartments or components. In one example, variations in components of the bloodstream over time such as oxyhemoglobin and water are determined based on the detected light, and localized to remove skin surface scattering and reflection, and to minimize changes in the venous bloodstream caused by impact and motion, resulting in an arterial bloodstream signal with an improved signal to noise for the cardiac arterial pulse. The same sensor can provide identifying features of type or status of a tissue target, such as heart rate or variability, respiratory rate, calories ingested or expended, hydration status, or even confirmation that the tissue is alive. Monitoring devices and systems incorporating the improved sensor, and methods for analysis, are also disclosed.
Owner:J FITNESS LLC

Large-area farmland crop water status monitoring method and system based on unmanned aerial vehicle infrared thermal image acquisition

The invention provides a large-area farmland crop water status monitoring method based on unmanned aerial vehicle infrared thermal image acquisition. The method comprises the following steps: 1)arranging auxiliary devices in the field, that is, field air temperature sensors and a ground full-evaporation reference surface; 2) carrying out large-area infrared image acquisition on farmland corps through an infrared thermal imaging system fixed to an unmanned aerial vehicle through a pan-tilt, and synchronously triggering a GPS module to obtain positioning information of the corresponding images; and 3) receiving by a ground data processing system the infrared images and the positioning information, carrying out image registering, splicing and segmentation on the images, extracting spatial distribution of canopy temperature and ground full-evaporation reference surface temperature, calculating the temperature of leaves when the stomas of the crops are fully closed, and finally, calculating water deficit index of the crops and carrying out highlighted display and early warning on the areas, where the water deficit index of the crops is higher than a critical value. Besides, the invention also provides a system suitable for the method. The method and system are suitable for large-area farmland crop water status monitoring, facilitate to realize agriculture precision irrigation and improve agricultural modernization level.
Owner:HOHAI UNIV

Calorie Monitoring Sensor And Method For Cell Phones, Smart Watches, Occupancy Sensors, And Wearables

InactiveUS20150148632A1Implementation more simply and inexpensivelyDiagnostics using lightDiagnostics using spectroscopyFluorescenceLarge Calorie
An improved sensor (102) for calorie monitoring in mobile devices, wearables, security, illumination, photography, and other devices and systems uses an optional phosphor-coated broadband white LED (103) to produce broadband light (114), which is then transmitted along with any ambient light to target (125) such as the ear, face, or wrist of a living subject. Some of the scattered light returning from the target to detector (141) is passed through narrowband spectral filter set (155) to produce multiple detector regions, each sensitive to a different narrowband wavelength range, and the detected light is spectrally analyzed to determine a measure of calories, such as calories expended, calories ingested, calorie balance, or rate of calories expended, in part based on a noninvasive measure of respiration, such as respiratory rate, respiratory effort, respiratory depth, or respiratory variability. In one example, variations in concentration in components of the bloodstream over time, such as hemoglobin and water in the arteries, are determined based on the detected light, and the measure of respiration is then determined based on the variations in concentration over time. In the absence of the LED light, ambient light may be sufficient illumination for analysis. The same sensor can provide identifying features of type or status of a tissue target, such as heart rate or heart rate variability, hydration status, sleep state, or even occupancy counting. Calorie monitoring systems incorporating the sensor as well as methods are also disclosed.
Owner:J FITNESS LLC

Respiratory Monitoring Sensor And Method For Cell Phones, Smart Watches, Occupancy Sensors, And Wearables

InactiveUS20150148625A1Implementation more simply and inexpensivelyDiagnostics using lightDiagnostics using spectroscopyFluorescenceLED lamp
An improved sensor (102) for respiratory and metabolic monitoring in mobile devices, wearables, security, illumination, photography, and other devices and systems uses an optional phosphor-coated broadband white LED (103) to produce broadband light (114), which is then transmitted along with any ambient light to a target (125) such as the ear, face, or wrist of a living subject. Some of the scattered light returning from the target to detector (141) is passed through narrowband spectral filter set (155) to produce multiple detector regions, each sensitive to a different waveband wavelength range, and the detected light is spectrally analyzed to determine a measure of respiration of the subject, such as respiratory rate, volume, effort, depth, or respiratory variability. In one example, variations in components of the bloodstream over time such as hemoglobin and water are determined based on the detected light, and said measure of respiration is then determined based on the in components of the bloodstream over time, with venous compartment changes as a result of body movement and body position changes, and skin surface compartment changes as a result of sensor movement, substantially removed. In the absence of the LED light, the ambient light may be sufficient illumination for analysis. The same sensor can provide identifying features of type or status of a tissue target, such as heart rate or variability, hydration status, or even confirmation that the tissue is alive. Respiratory monitoring systems incorporating the sensor, as well as methods, are also disclosed.
Owner:J FITNESS LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products