Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

7494results about "Thermometer details" patented technology

Time-temperature indicator device and method of manufacture

A time-temperature indicator label for measuring the length of time to which a product has been exposed to a temperature above a pre-determined temperature is provided. The period of time of exposure is integrated with the temperature to which the indicator is exposed. The label is a composite of a plurality of layers adapted to be adhered at its underside to a product container. The label includes a printable surface layer, a longitudinal wicking strip that is adhered underneath the surface layer substantially at the opposite extremities only of the wicking strip and a lower substrate layer forming an envelope with said surface layer. A heat-fusible substance, which melts and flows above a pre-determined temperature, is applied on the surface of the wicking strip contiguous to at least one of the ends of the wicking member. When the heat-fusible substance is exposed to a temperature above the pre-determined temperature, the heat-fusible substance flows along the length of the wicking member. The label has a printable surface layer and is sealed at its peripheral edge to the peripheral edge of the substrate layer. These layers encapsulate the wicking member and the heat-fusible substance. The surface layer is provided with a sight window at an intermediate location over the wicking member through which the progress of flow on the wicking member is observed.

Reactor and method of processing a semiconductor substrate

A reactor for processing a substrate includes a first housing defining a processing chamber and supporting a light source and a second housing rotatably supported in the first housing and adapted to rotatably support the substrate in the processing chamber. A heater for heating the substrate is supported by the first housing and is enclosed in the second housing. The reactor further includes at least one gas injector for injecting at least one gas into the processing chamber onto a discrete area of the substrate and a photon density sensor extending into the first housing for measuring the temperature of the substrate. The photon density sensor is adapted to move between a first position wherein the photon density sensor is directed to the light source and a second position wherein the photon density sensor is positioned for directing toward the substrate. Preferably, the communication cables comprise optical communication cables, for example sapphire or quartz communication cables. A method of processing a semiconductor substrate includes supporting the substrate in a sealed processing chamber. The substrate is rotated and heated in the processing chamber in which at least one reactant gas is injected. A photon density sensor for measuring the temperature of the substrate is positioned in the processing chamber and is first directed to a light, which is provided in the chamber for measuring the incident photon density from the light and then repositioned to direct the photon density sensor to the substrate to measure the reflection of the light off the substrate. The incident photon density is compared to the reflected light to calculate the substrate temperature.

Organic light emitting display and driving method thereof

An organic light emitting display includes a pixel unit including a plurality of pixels arranged at intersecting points of data lines, scan lines and light emitting control lines; a temperature sensor provided to measure a temperature of the pixel unit; a first analog/digital converter (first ADC) to convert information of the temperature measured in the temperature sensor into a first digital value; a controller to receive the first digital value outputted from the first ADC and outputting a control signal corresponding to the received first digital value; a sensing unit to extract a degradation level of an organic light emitting diode included in each of the pixels; a second analog/digital converter (second ADC) to receive information of the degradation of the organic light emitting diode extracted from the sensing unit and a control signal outputted from the controller and generating a second digital value corresponding to the information of the degradation of the organic light emitting diode that is varied according to the temperature; a conversion unit to convert an input data (Data) into a correction data (Data′) so as to display an image having uniform luminance regardless of the changes in the degradation level of the organic light emitting diode according to temperature, by using the second digital value outputted from the second ADC; a data driver to receive the correction data (Data′) outputted from the conversion unit and generating data signals to be supplied to the pixels.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products