Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2443 results about "Hysteresis" patented technology

Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable. This history dependence is the basis of memory in a hard disk drive and the remanence that retains a record of the Earth's magnetic field magnitude in the past. Hysteresis occurs in ferromagnetic and ferroelectric materials, as well as in the deformation of rubber bands and shape-memory alloys and many other natural phenomena. In natural systems it is often associated with irreversible thermodynamic change such as phase transitions and with internal friction; and dissipation is a common side effect.

Hysteresis switch and electricity charging module using the same

ActiveUS20110241624A1Stable charging voltageHysteresis characteristicTransistorBatteries circuit arrangementsElectricityElectrical resistance and conductance
An electricity charging module using a hysteresis switch includes a storage capacitor that preliminarily stores electrical energy supplied from an external power source, a charging unit for preventing over-charging or over-discharging through monitoring of the charging state of the rechargeable battery, and a hysteresis switch that has a larger turn-on voltage level than the turn-off voltage level, and located between the storage capacitor and the charging unit, thereby electrically connecting or disconnecting the storage capacitor with the charging unit. The hysteresis switch includes a first voltage dividing resistor pair that divides the voltage of an external power source by the resistance ratio of the first voltage dividing resistor pair, a second voltage dividing resistor pair whose one end is connected to a positive electrode terminal of the external power source, a first switching device whose control terminal is connected to the junction of the voltage dividing resistors of the second voltage dividing resistor pair, a second switching device whose control terminal is connected to the junction of the voltage dividing resistors of the first voltage dividing resistor pair, and a resistor that is connected to the junction between the first electrode terminal of the second switching device and the junction of the voltage dividing resistors of the first voltage dividing resistor pair.

Digital optical joystick with mechanically magnified resolution

A one or multiple axis digital joystick using incremental optical encoding with mechanical means for magnifying motion of the encoded medium to achieve higher resolution than otherwise attainable with the same optoelectronic components. Excellent linearity between shaft rotation and digital output results from elimination of backlash and preservation of rotary-only motion in the mechanical linkage between shaft and encoder disc. All electronic functions are implemented in a low-cost internal microcomputer that interfaces in serial or parallel mode with many system computers or microcomputers without additional circuitry. The microcomputer converts the incrementally encoded signals from the optoelectronic devices into absolute shaft-position information in a fail-safe manner. The joystick can be operated very rapidly without error because the encoded pulses to be counted are applied to microcomputer inputs that store the occurrence of each pulse until the microcomputer can process them. The stored program also ensures that each joystick has the same full-scale outputs despite minor mechanical variations from one joystick to another. In addition, it corrects errors caused by hysteresis in some of the optoelectronic components. The resulting joystick is field replaceable without any adjustments or recalibration.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products