Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1613 results about "Gas engine" patented technology

A gas engine is an internal combustion engine that runs on a gaseous fuel, such as coal gas, producer gas, biogas, landfill gas or natural gas. In the United Kingdom, the term is unambiguous. In the United States, due to the widespread use of "gas" as an abbreviation for gasoline (petrol), such an engine might also be called a gaseous-fueled engine or natural gas engine or spark ignited.

Micro-pilot injection ignition type gas engine

What is disclosed is a micro-pilot injection ignition type gas engine, whereby an air fuel ratio control in starting the engine is executed with enhanced precision, by means of introducing skip-firing intermittent operations which reflect the engine operation conditions, while an idling time span can be shortened or omitted.
The engine includes: a gas valve that opens and closes a fuel-gas passage in front of each cylinder, so as to arbitrarily control the throat area as well as the opening-closing time span of the gas valve; an engine speed detecting unit to detect the engine speed; a combustion diagnosis unit to detect an engine combustion state through a cylinder pressure distribution along elapsed time, as to each cylinder; an opening-closing control unit as to the gas valve, so as to control the intermittent opening-closing of the gas valve according to the levels of the detected engine speed as well as the cylinder pressure distribution; whereby, in starting the engine, the intermittent opening-closing of the gas-valve enables at least one skip-firing mode that brings an enhanced fuel-supply pressure-pulsation with which a relatively large amount of fuel-gas is supplied per engine cycle with firing so that the air fuel-gas ratio of each cylinder reaches a prescribed target value.
Owner:MITSUBISHI HEAVY IND ENGINE & TURBOCHARGER LTD

Two-Stage Plasma Process For Converting Waste Into Fuel Gas And Apparatus Therefor

A two-step gasification process and apparatus for the conversion of solid or liquid organic waste into clean fuel, suitable for use in a gas engine or a gas burner, is described. The waste is fed initially into a primary gasifier, which is a graphite arc furnace. Within the primary gasifier, the organic components of the waste are mixed with a predetermined amount of air, oxygen or steam, and converted into volatiles and soot. The volatiles consist mainly of carbon monoxide and hydrogen, and may include a variety of other hydrocarbons and some fly ash. The gas exiting the primary gasifier first passes through a hot cyclone, where some of the soot and most of the fly ash is collected and returned to the primary gasifier. The remaining soot along with the volatile organic compounds is further treated in a secondary gasifier where the soot and the volatile compounds mix with a high temperature plasma jet and a metered amount of air, oxygen or steam, and are converted into a synthesis gas consisting primarily of carbon monoxide and hydrogen. The synthesis gas is then quenched and cleaned to form a clean fuel gas suitable for use in a gas engine or a gas burner. This offers higher thermal efficiency than conventional technology and produces a cleaner fuel than other known alternatives.
Owner:PHOENIX HAUTE TECH

Heat-gaining combined heat and power system

The invention relates to a heat-gaining combined heat and power system, which belongs to the application field of the energy technology, and consists of a gas engine, a power generator, an absorption-type heat pump, a high-temperature smoke-water heat exchanger, a middle-temperature smoke-water heat exchanger, a low-temperature smoke-water heat exchanger, a water-water heat exchanger, a solution dehumidifying system, a ground heat exchanger, a superficial-layer underground water well or a sewage heat exchanger and accessories such as connection pipes and valves. The system can realize two work conditions of heat supply and coldness supply, and is provided with multiple pipeline switching forms under the work conditions of the heat supply and the coldness supply so as to adapt to the requirements of different situations; the system can ensure the adequate utilization of the heat of the gas engine, can adequately recycle the surplus heat of the exhausted smoke of the gas engine in winter, and can realize the extraction of the heat of the low-temperature heat source so as to improve the comprehensive efficiency of the system and to reduce the environmental pollution; and the system can discharge the heat of the low-temperate smoke and the heat of the cooling water into the low-temperature heat source to be stored in summer; and moreover combined with the solution dehumidification and the living hot water, the energy utilization efficiency of the system can be improved.
Owner:TSINGHUA UNIV +1

Pre-combustion-chamber type gas engine

An object is to improve a trap effect to trap ignition fuel gas supplied to a pre-combustion chamber and reduce an amount of non-combusted ignition fuel gas flowing out of the pre-combustion chamber to suppress a decrease in combustion efficiency. A pre-combustion-chamber type gas engine includes: a pre-combustion chamber Sr disposed on a cylinder head portion 10; a spark plug 20 disposed on an upper part of the pre-combustion chamber Sr; a pre-combustion-chamber gas supply mechanism configured to supply ignition fuel gas “g” to the pre-combustion chamber Sr via gas supply channels for the pre-combustion chamber 22a and 22b with an opening on an upper part of the pre-combustion chamber Sr; and a check valve 24 disposed in the gas supply channel 22b for the pre-combustion chamber. The opening of the gas supply channel 22a for the pre-combustion chamber is disposed on a lower surface of a cover member 16 forming the pre-combustion chamber Sr or on an upper section of a side wall of a pre-combustion-chamber member 14, the opening facing in a tangent direction of a side-wall inner peripheral surface 14a of the pre-combustion-chamber member 14. The ignition fuel gas “g” supplied to the pre-combustion chamber Sr forms a swirl flow s1 which swirls about a longitudinal axis x of the pre-combustion chamber Sr inside the pre-combustion chamber Sr.
Owner:MITSUBISHI HEAVY IND ENGINE & TURBOCHARGER LTD

Weak tumble rapid combustion system and gas engine

The invention discloses a weak tumble rapid combustion system and a gas engine. The weak tumble rapid combustion system comprises a piston, a cylinder cover, an air intake channel and an exhaust channel, a combustion chamber is formed between the top of the piston and the cylinder cover, the cylinder cover is provided with an air intake throat and an exhaust throat, the section, close to the air intake throat, of the air intake channel is a tumble guide air channel, the axis of the tumble guide air channel is obliquely arranged relative to the bottom face of the cylinder cover, the upper sideface of the tumble guide air channel is an undershoot guide face obliquely arranged relative to the bottom face of the cylinder cover, the lower side face of the tumble guide air channel is an arc-shaped guide face sunken towards the bottom face of the cylinder cover, an eccentric chamfer is arranged at the lower end of the air intake throat, and the eccentric direction of the eccentric chamfer deviates along the direction of a central connecting line from the air intake throat to the air outlet throat. According to the weak tumble rapid combustion system, during air suction, fuel gas forms large-scale weak tumble motion in the air cylinder and is broken into small-scale turbulent flow in the last stage of compression, so that the flame propagation speed is increased, and the fuel gas utilization rate and the engine heat efficiency are improved.
Owner:WEICHAI POWER CO LTD

Flue gas waste heat recovery system based on solution absorption cycle

The invention belongs to the technical field of energy resources, in particular to a flue gas waste heat recovery system based on solution absorption cycle, which is used for recovering flue gas waste heat and moisture in natural gas. The system consists of a generator, a condenser and an absorber, and the absorber is a one-level absorber or multiple-level serial absorber. High temperature flue gas from a boiler or a gas engine is used for heating a dilute solution in the generator, moisture in the solution is absorbed, the high temperature flue gas becomes high humidity fuel gas, and the dilute solution becomes a concentrated solution. The high humidity fuel gas and cooling water exchange heat in the condenser, the high humidity fuel gas is cooled to below dew point temperature, condensate water is separated out, after being cooled through a solution/solution heat exchanger and a solution/water heat exchanger, the concentrated solution sprays in the absorber and flows downwards, the flue gas flows from bottom to top in the direction opposite to that of the solution, water vapor in the flue gas is absorbed by the solution, and simultaneously, latent heat is discharged and the flue gas is discharged from a chimney. Heating backwater absorbs heat from the condenser, the absorber and the solution/water heat exchanger, and after being heated, the heating backwater can supply heat to a city heating net directly or after being heated by the boiler.
Owner:TSINGHUA UNIV +1

Fatigue life evaluation method of diesel locomotive

The invention relates to a fatigue service life estimation method for a gas engine which includes the follows: firstly selecting the key devices for estimating the fatigue service life of the gas engine; then selecting a variable which affects the fatigue service life of each key device; obtaining the needed variable value by collecting relevant data; working out the injury tolerance of each key device by utilizing a Miner rule in a fatigue accumulation injury theory; when the value is equal to 1, considering the devices to reach the fatigue service life and need to be overhauled. The integral fatigue injury tolerance for the gas engine is equal to the fatigue injury tolerance of each key device multiplied by the sum of the corresponding weight coefficients; when the value is larger than 1, then the engine is considered to reach the fatigue service life and need to be heavily repaired. Finally an estimation result is led to approach the actual injury situation of the engine by correcting the weight coefficients, thus being used as a basic for confirming the heavy repair period of the engine. The invention is different from the traditional method which uses the running kilometrages and the equivalent kilometrages to confirm the period for the heavy repair of the engine and essentially reflects the injury situation of the gas engine; so the reliability of the estimation result is higher.
Owner:BEIJING JIAOTONG UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products