Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2317 results about "Spark plug" patented technology

A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air mixture by an electric spark, while containing combustion pressure within the engine. A spark plug has a metal threaded shell, electrically isolated from a central electrode by a porcelain insulator. The central electrode, which may contain a resistor, is connected by a heavily insulated wire to the output terminal of an ignition coil or magneto. The spark plug's metal shell is screwed into the engine's cylinder head and thus electrically grounded. The central electrode protrudes through the porcelain insulator into the combustion chamber, forming one or more spark gaps between the inner end of the central electrode and usually one or more protuberances or structures attached to the inner end of the threaded shell and designated the side, earth, or ground electrode(s).

System and method for enhanced combustion control in an internal combustion engine

A system and method for enhanced combustion control in an internal combustion engine is disclosed. A fuel supply system has a fuel injector positioned to directly inject fuel into a combustion chamber, and it is capable of performing a split injection wherein a first fuel injection in each engine cycle precedes a second fuel injection that occurs during compression stroke in the same engine cycle. A spark plug produces a spark to ignite a first air/fuel mixture portion created due to the second fuel injection, initiating a first stage combustion. The first stage combustion raises temperature and pressure high enough to cause auto-ignition of a second air/fuel mixture portion surrounding the first air-fuel mixture portion, initiating a second stage combustion. An engine controller is programmed to perform control over initiation timing of the second stage combustion in response to at least one of the engine speed and load. This control is accomplished by varying at least one of a fuel injection timing of the first fuel injection, a fuel injection timing of the second fuel injection, spark timing, a proportion of fuel quantity of the second fuel injection to the total fuel injected in each engine cycle, and an EGR rate in response to at least one of engine speed and load.
Owner:NISSAN MOTOR CO LTD

Electrode for an Ignition Device

ActiveUS20070290591A1Resistance to oxidationSparking plugsCeriumHafnium
An electrode for an ignition device is made from a Ni-based nickel-chromium-iron alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture includes, by weight of the alloy: 14.5-25% chromium; 7-22% iron; 0.2-0.5% manganese; 0.2-0.5% silicon; 0.1-2.5% aluminum; 0.05-0.15% titanium; 0.01-0.1% total of calcium and magnesium; 0.005-0.5% zirconium; 0.001-0.01% boron, and the balance substantially Ni. It may also include at least one rare earth element selected from the group consisting of: yttrium, hafnium, lanthanum, cerium and neodymium in amounts ranging from 0.01-0.15% by weight, and incidental impurities, including cobalt, niobium, molybdenum, copper, carbon, lead, phosphorus or sulfur. These total of these impurities will typically be controlled to limits of 0.1% cobalt, 0.05% niobium, 0.05% molybdenum, 0.01% copper, 0.01% carbon, 0.005% lead, 0.005% phosphorus and 0.005% sulfur. The ignition device may be a spark plug which includes a ceramic insulator, a conductive shell, a center electrode disposed in the ceramic insulator having a terminal end and a sparking end with a center electrode sparking surface, and a ground electrode operatively attached to said shell having a ground electrode sparking surface, the center electrode sparking surface and the ground electrode sparking surface defining a spark gap therebetween. At least one of the center electrode or the ground electrode includes the solution-strengthened Ni-based nickel-chromium-iron alloy. The Ni-based nickel-chromium-iron alloy electrodes of the invention may also include a core with thermal conductivity greater than that of the Ni-based nickel-chromium-iron alloy, such as copper or silver or their alloys.
Owner:FEDERAL MOGUL WORLD WIDE LLC

Constant-volume combustion bomb system for simulating self-combustion of gas at tail end of gasoline engine

The invention discloses a constant-volume combustion bomb system for simulating self-combustion of gas at the tail end of a gasoline engine. The constant-volume combustion bomb system consists of a constant-volume combustion device, a fuel supply system, an ignition system, a high-speed photography system, a gas intake and exhaust system, a data acquisition system and a single-chip control system, wherein the constant-volume combustion device comprises a combustion bomb body with a cylindrical cavity; a main spark plug is mounted on the upper end surface of the combustion bomb body, at the end close to an oil injector, and an auxiliary spark plug is mounted close to the left end of the combustion bomb body; and the combustion bomb body is provided with a left window, a front window and a rear window and is further provided with the oil injector, a high-frequency response temperature sensor, a high-frequency response cylinder pressure sensor, a pressure transmitter mounting hole, a temperature transmitter mounting hole, an exhaust port and an intake channel. According to the invention, the main spark plug is adopted to simulate the normal flame ignition while the auxiliary spark plug is adopted to simulate self-combustion of gas at the tail end, so that self-combustion of gas at the tail end of the gasoline engine at all times can be simulated without the need of reaching high temperature and high pressure, and the constant-volume combustion bomb system is used for researching the influence of self-combustion of different tail-end gases to the cylinder internal pressure and detonation.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products