Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1332 results about "Plasma torch" patented technology

A plasma torch (also known as a plasma arc, plasma gun, or plasma cutter, plasmatron) is a device for generating a directed flow of plasma. The plasma jet can be used for applications including plasma cutting, plasma arc welding, plasma spraying, and plasma gasification for waste disposal.

System and method for fabricating or repairing a part

According to one embodiment of the invention, a system for fabricating a part includes a computer operable to control the fabrication of a three-dimensional part using a solid CAD model, a deposition station operable to deposit successive two-dimensional layers of material to fabricate the three-dimensional part, and a machining station operable to remove at least a portion of one or more of the deposited two-dimensional layers of material. The deposition station includes a substrate on which to fabricate the three-dimensional part, a welding-based deposition system having a welding torch, a laser-based deposition system having a laser head, a plasma powder cladding system having a plasma torch, and a multi-axis robot operable to, when directed by the computer, utilize one of the welding-based deposition system, laser-based deposition system, and plasma powder cladding system to deposit any of the two-dimensional layers of material. The machining station includes a multi-axis milling machine and an automatic tool changer. The milling machine is operable to, when directed by the computer, select from a plurality of machining tools associated with the automatic tool changer for use in the milling machine.
Owner:SOUTHERN METHODIST UNIVERSITY

Heat energy recapture and recycle and its new applications

What has been created is a plurality and a variety of processes and a variety of devices correspondingly supportive to each process, wherein, a new partnership between; (1) a heat absorbing radiator compressed air pipes / tubes and (2) a gas turbine engine or a reciprocating piston engine,—is used to recapture and reconvert the, otherwise wasted, heat energies expelled by engines, by factories, by smelting plants, by distillation plants, by chillers / coolers / freezers, by cooking ovens, by lamps / stoves, by trash burners, and the heat energies created by the solar heat on the desert / ocean water,—into electric power and finally into hydrogen-deuterium fuel,—by having the engine's tailpipes submerged in cold compressed air inside the heat absorbing radiator pipes in reverse air flow, to further drive and re-drive the same engine; wherein, in order to capture fusion heat energy the hydrogen bomb is detonated in the deep ocean to catch the flames by the water and the hot water is used to energize the compressed air inside the heat absorbing radiator pipes; wherein, in order to produce fusion energy, an abundant electric arc is passed across liquid deuterium or across gaseous deuterium by the electro-plasma torch and sparkplug in the internal combustion engine, and by detonating a dynamite inside a liquid deuterium; wherein diamond is produced by placing carbon inside the hydrogen bomb; and wherein, deuterium fusion flame is used first in smelting glass to large sizes before running an engine.
Owner:CHRISTIAN SCHOOL OF TECH CHARITABLE FOUND TRUST

Fast quench reactor and method

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.
Owner:BATTELLE ENERGY ALLIANCE LLC

Plasma processing device, plasma torch and method for replacing components of same

The object is to facilitate replacement of consumable parts, such as the electrode, nozzle, or the like, in a plasma torch, whilst suppressing any increase in structural complexity or cost. An electrode 103, insulating guide 105 and nozzle 107 are fit together installed in a retainer cap 113. By means of O-rings 193, 195, 197, the electrode 103, insulating guide 105, nozzle 107 and retainer cap 113 are coupled together by a coupling force which allows the components to be pulled apart and separated manually. By attaching the retainer cap 113 to the torch main unit and detaching the retainer cap 113 from same, the electrode 103, insulating guide 105 and nozzle 107 can be attached and detached to and from the torch main unit, simultaneously.
Owner:KOMATSU LTD

Plasma torch with corrosive protected collimator

To protect the collimator of a transferred plasma arc torch from premature failure due to corrosion, an anti-corrosive covering is applied on the exposed face surface and a portion of the inner exit bore of the collimator. The specification describes several methods for producing the collimator for a plasma torch having an anti-corrosive coating or cladding on the exposed surfaces thereof, including electroplating, electroless plating, flame spraying, plasma spraying, plasma transferred arc, hot isostatic pressing and explosive cladding.
Owner:PHOENIX SOLUTIONS CO

Method of producing nanoparticles using a evaporation-condensation process with a reaction chamber plasma reactor system

The present invention provides a method and apparatus for the controlled synthesis of nanoparticles using a high temperature process. The reactor chamber includes a high temperature gas heated by means such as a plasma torch, and a reaction chamber. The homogenizer includes a region between the reactant inlets and the plasma (the spacer zone) to ensure that feeds from the reactant inlets are downstream of the recirculation zone induced by the high temperature gas. It also includes a region downstream of the reactant inlets that provides a nearly I dimensional (varying only in the axial direction) flow and concentration profile in the reaction zone to produce nanoparticles with narrow size distribution.
Owner:EI DU PONT DE NEMOURS & CO

Gas Reformulating System Using Plasma Torch Heat

A method and apparatus is described for reformulating of an input gas from a gasification reaction into a reformulated gas. More specifically, a gas reformulating system having a gas reformulating chamber, one or more plasma torches, one or more oxygen source(s) inputs and control system is provided thereby allowing for the conversion of an input gas from a gasification reaction into a gas of desired composition.
Owner:PLASCO CONVERSION TECH INC

Plasma spray method and apparatus for applying a coating utilizing particle kinetics

A method of operation of a plasma torch and the plasma apparatus to produce a hot gas jet stream directed towards a workpiece to be coated by first injecting a cold high pressure carrier gas containing a powder material into a cold main high pressure gas flow and then directing this combined high pressure gas flow coaxially around a plasma exiting from an operating plasma generator and converging directly into the hot plasma effluent, thereby mixing with the hot plasma effluent to form a gas stream with a net temperature based on the enthalpy of the plasma stream and the temperature and volume of the cold high pressure converging gas, establishing a net temperature of the gas stream at a temperature such that the powdered material will not melt or soften, and projecting the powder particles at high velocity onto a workpiece surface. The improvement resides in mixing a cold high pressure carrier gas with powder material entrained in it, with a cold high pressure gas flow of gas prior to mixing this combined gas flow with the plasma effluent which is utilized to heat the combined gas flow to an elevated temperature limited to not exceeding the softening point or melting point of the powder material. The resulting hot high pressure gas flow is directed through a supersonic nozzle to accelerate this heated gas flow to supersonic velocities, thereby providing sufficient velocity to the particles striking the workpiece to achieve a kinetic energy transformation into elastic deformation of the particles as they impact the onto the workpiece surface and forming a dense, tightly adhering cohesive coating. Preferably the powder material is of metals, alloys, polymers and mixtures thereof or with semiconductors or ceramics and the powder material is preferably of a particle size range exceeding 50 microns.
Owner:FLAME SPRAY IND

Plasma spray method and apparatus for applying a coating utilizing particle kinetics

A method of operation of a plasma torch and the plasma apparatus to produce a hot gas jet stream directed towards a workpiece to be coated by first injecting a cold high pressure carrier gas containing a powder material into a cold main high pressure gas flow and then directing this combined high pressure gas flow coaxially around a plasma exiting from an operating plasma generator and converging directly into the hot plasma effluent, thereby mixing with the hot plasma effluent to form a gas stream with a net temperature based on the enthalpy of the plasma stream and the temperature and volume of the cold high pressure converging gas, establishing a net temperature of the gas stream at a temperature such that the powdered material will not melt or soften, and projecting the powder particles at high velocity onto a workpiece surface. The improvement resides in mixing a cold high pressure carrier gas with powder material entrained in it, with a cold high pressure gas flow of gas prior to mixing this combined gas flow with the plasma effluent which is utilized to heat the combined gas flow to an elevated temperature limited to not exceeding the softening point or melting point of the powder material. The resulting hot high pressure gas flow is directed through a supersonic nozzle to accelerate this heated gas flow to supersonic velocities, thereby providing sufficient velocity to the particles striking the workpiece to achieve a kinetic energy transformation into elastic deformation of the particles as they impact the onto the workpiece surface and forming a dense, tightly adhering cohesive coating. Preferably the powder material is of metals, alloys, polymers and mixtures thereof or with semiconductors or ceramics and the powder material is preferably of a particle size range exceeding 50 microns. The system also includes a rotating member for coating concave surfaces and internal bores or other such devices which can be better coated using rotation.
Owner:FLAME SPRAY IND

Method of making a glass fiber preform with adjusting a spacing while increasing acceleration of a starting glass powder

The invention relates to manufacturing glass fiber preforms. It relates to a method comprising rotating preform about its own axis, and displacing a plasma torch in translation relative to the preform in a direction parallel to the axis of the preform, the axes of the flame and of the preform and being offset by a certain distance, and then inserting glass powder into the plasma flame under gravity. According to the invention, the glass powder is accelerated before penetrating into the plasma flame by means of an accelerator gas, and the offset distance between the axes is reduced with increasing acceleration of the powder. The invention is applicable to manufacturing glass fibers, and in particular optical fibers.
Owner:ALCATEL LUCENT SAS

Thermal synthesis apparatus

An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.
Owner:BATTELLE ENERGY ALLIANCE LLC

Plasma cutting apparatus and control unit thereof

Cutting quality of the product, in particular, hole cutting quality, in plasma arc cutting is improved. A control unit, which controls a plasma cutting apparatus for cutting a product from a plate material by moving a plasma torch at a cutting speed along a cutting path corresponding to the product shape to cut the plate material, while supplying an arc current and a plasma gas to the plasma torch and forming a plasma arc from a nozzle of the plasma torch to the plate material, conducts control so that, when a hole is cut, a cutting speed is lower, a value of the arc current value is smaller, and a plasma gas flow rate or pressure is less than those when a contour is cut.
Owner:KOMATSU IND CORP

High-purity silica powder, and process and apparatus for producing it

Use of a flame hydrolysis apparatus for preparing fumed silica particles or a plasma torch apparatus for sintering fumed silica particles to fused silica particles is capable of producing highly pure silica with non-silicon metal impurities less than 500 pb, when at least an inner nozzle is constructed of a silicon-containing material having a low level of non-silicon metal impurities. Preferably, all surfaces in the respective apparatus which contact silica are of similar construction. The silica contains a low level of impurities as produced, without requiring further purification.
Owner:WACKER CHEM GMBH

Plasma spray method for applying a coating utilizing particle kinetics

A method of operation of a plasma torch. A cold high pressure carrier gas containing a powder material is injected into a cold main high pressure gas flow and then this combined flow is directed coaxially around a plasma exiting from an operating plasma generator and converging into the hot plasma effluent, mixing with the effluent to form a gas stream with a net temperature, based on the enthalpy of the plasma stream and the temperature and volume of the cold high pressure converging gas, such that the powdered material will not melt. The combined flow with entrained is directed through a supersonic nozzle accelerating the flow to supersonic velocites sufficient that the particles striking the workpiece achieve kinetic energy transformation into elastic deformation of the particles as they impact the workpiece forming a cohesive coating.
Owner:FLAME SPRAY IND

Device for the plasma treatment of gases

Provided is a device for the microwave-sustained plasma treatment of gases, which comprises a hollow structure forming a waveguide intended to be connected to a microwave generator, and means for making the gas to be treated flow through the said structure in a region in which the amplitude of the electric field associated with the incident wave is high. The means for making the gas flow comprise a plasma torch for producing a plasma in the gas. The torch comprises an injector made of an electrically conducting material mounted on a first large face of the said structure and extending so as to project through an orifice made in a second large face opposite the said first large face. A gap for passage of the incident waves lies around the injector.
Owner:LAIR LIQUIDE SA POUR LETUDE & LEXPLOITATION DES PROCEDES GEORGES CLAUDE

Nozzle for plasma torch

The present invention relates to a nozzle for a plasma torch, in which the nozzle is detachably attached to the plasma torch and has an injection port for injecting a plasma arc formed at the center thereof, the nozzle for a plasma torch comprising: a water supplying pipe for cooling water; a water draining pipe for the cooling water; an annular water passage arranged around the injection port; and a plurality of connecting water passages for independently connecting the water supplying pipe to the annular water passage and the water draining pipe to the annular water passage.
Owner:KOIKE SANSO KOGYO CO LTD

Gas reformulation system comprising means to optimize the effectiveness of gas conversion

This invention provides a system and method for efficient reformulation of an initial gas with associated characteristics into an output gas with desired characteristic parameters, within a substantially sealed, contained, and controlled environment. The gas reformulating system uses a gas energizing field to disassociate the initial gas molecules and molecules of injected process additives of appropriate types and amounts, into their constituents that then recombine to form the output gas with the desired parameters. The gas reformulating system further comprises a control system that regulates the process and thereby enables the process to be optimized. The gas energizing field may be provided at least partly by hydrogen burners or plasma torches.
Owner:PLASCO ENERGY GROUP INC

Methods and apparatus for generating a plasma torch

A modular system for constructing an atmospheric pressure plasma source. A plasma torch module may be constructed by reassembling the structural components of two (2) different models of spark plugs. Each module can produce a plasma torch having a radius of about 1 cm or more, a height of about 6 cm, and a peak density exceeding 1013 cm-3. A set of modules, each connected in series, may be used with a ballasting capacitor such that an array can be operated while sharing a common power supply to produce a plasma having a relatively large volume and a relatively high density. A system having a number of plasma torch modules may be used in applications for absorbing radiation, reducing air drag and igniting fuel.
Owner:POLYTECHNIC INST OF NEW YORK

Method and System of Conserving Plasma Torch Consumable

A system for conserving a consumable component of a plasma torch is disclosed. The system includes a controller of a plasma torch that is connected to a power source. The controller is configured to, during a single trigger actuation, delay generation of an arc after a prior arc collapses. Such a control allows the consumable components of the plasma torch to cool prior to subsequent operation.
Owner:ILLINOIS TOOL WORKS INC

Induction plasma synthesis of nanopowders

A process and apparatus for synthesizing a nanopowder is presented. In particular, a process for the synthesis of nanopowders of various materials such as metals, alloys, ceramics and composites by induction plasma technology, using organometallic compounds, chlorides, bromides, fluorides, iodides, nitrites, nitrates, oxalates and carbonates as precursors is disclosed. The process comprises feeding a reactant material into a plasma torch in which is generated a plasma flow having a temperature sufficiently high to yield a superheated vapour of the material; transporting said vapour by means of the plasma flow into a quenching zone; injecting a cold quench gas into the plasma flow in the quenching zone to form a renewable gaseous cold front; and forming a nanopowder at the interface between the renewable gaseous cold front and the plasma flow.
Owner:TEKNA PLASMA SYST INC

Plasma method for preparing nano carbon material using coal liquefied residue as raw material

The invention discloses an arc plasma torch preparing nanometer charcoal fibrous material method, which comprises the following steps: placing untreated leavings of liquefying coal directly in direct current arc plasma torch to carry on heat-treatment; using nitrogen for arc working gas under atmosphere pressure; getting nanometer charcoal fibrous material after 120-175 seconds, wherein there is no need to add in any activators in preparing process. The method is characterized by the following: the craft route is simple; the raw material is the waste of coal hydrogenant liquefaction craft; it's a good way to use coal liquification leavings to prepare high-added value, functional carbon material; the nanometer charcoal fibrous material can be used for accelerating agent, catalyst carrier, lithium ion secondary cell anode material, double-layer capacitor electrode, highly effective active solid, release agent and construction reinforced materials.
Owner:DALIAN UNIV OF TECH

Nozzle for use in a torch head of a plasma torch apparatus

InactiveUS6137078AImproved an more homogenous cooling of the nozzle body memberCool evenlyArc welding apparatusPlasma welding apparatusEngineeringTorch
The nozzle is provided with a plurality of cooling channels running from an annular channel located in an inlet region of the nozzle through the nozzle in longitudinal direction up to an outlet region of the nozzle. The powder supply channels provided for the supply of coating material are led between the cooling channels. A nozzle support member adapted for receiving the nozzle is provided with cooling ducts that are hydraulically connected to the cooling channels of the nozzle and constitute therewith a nozzle cooling circulation system. The advantages of this design can be seen in the facts that the nozzle is homogeneously and efficiently cooled up to its outlet end and that the danger of building-up molten deposits within the nozzle is substantially avoided.
Owner:SULZER METRO AG

Combustible material plasma high-temperature gasification technique and equipment thereof

The invention relates to a combustible material plasma high-temperature gasification technique and equipment thereof. The technique comprises the following steps: firstly, laying a coke bed layer at the bottom part of a gasification furnace; secondly, putting the combustible material, a fluxing agent and an extra coke on the coke bed layer continuously to form a fuel bed layer; then injecting a primary oxidizing agent, starting a first-stage plasma torch to generate high temperature and high heat, forming a fusing zone at the joint of the coke bed layer and the fuel bed layer, forming a gasifying zone above the fusion zone, gasifying the combustible material to generate crude synthesis gas, and discharging the generated fused slag from the bottom part of the gasification furnace; then introducing the crude synthesis gas into a gas-solid separator for removing impurities to obtain purified synthesis gas; and finally introducing the purified synthesis gas into a detarrer, injecting a secondary oxidizing agent, starting a second-stage plasma torch to generate high temperature and high heat, cracking residual tar therein to obtain fined synthesis gas. The equipment mainly comprises three parts, namely the gasification furnace, the gas-solid separator and the detarrer. The fuel has good adaptability, high gasification efficiency, few tar content in the synthesis gas and high activeingredient.
Owner:SUNSHINE KAIDI NEW ENERGY GROUP CO LTD

Nanosturctured Coating and Coating Method

The present invention relates to a method of coating a surface with nanoparticles, to a nanostructured coating that can be obtained by this method, and also to a device for implementing the method of the invention. The method is characterized in that it comprises an injection of a colloidal sol of said nanoparticles into a plasma jet that sprays them onto said surface. The device (1) comprises: a plasma torch (3); at least one container (5) containing the colloidal sol (7) of nanoparticles; a device (9) for fixing and for moving the substrate(S); and a device (11) for injecting the colloidal sol into the plasma jet (13) of the plasma torch. The present invention has applications in optical, electronic and energy devices (cells, thermal barriers) comprising a nanostructured coating that can be obtained by the method of the invention.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics

A method of operation of a plasma torch and the plasma apparatus to produce a hot gas jet stream directed towards a workpiece to be coated by first injecting a cold high pressure carrier gas containing a powder material into a cold main high pressure gas flow and then directing this combined high pressure gas flow coaxially around a plasma exiting from an operating plasma generator and converging directly into the hot plasma effluent, thereby mixing with the hot plasma effluent to form a gas stream with a net temperature based on the enthalpy of the plasma stream and the temperature and volume of the cold high pressure converging gas, establishing a net temperature of the gas stream at a temperature such that the powdered material will not melt or soften, and projecting the powder particles at high velocity onto a workpiece surface. The improvement resides in mixing a cold high pressure carrier gas with powder material entrained in it, with a cold high pressure gas flow of gas prior to mixing this combined gas flow with the plasma effluent which is utilized to heat the combined gas flow to an elevated temperature limited to not exceeding the softening point or melting point of the powder material. The resulting hot high pressure gas flow is directed through a supersonic nozzle to accelerate this heated gas flow to supersonic velocities, thereby providing sufficient velocity to the particles striking the workpiece to achieve a kinetic energy transformation into elastic deformation of the particles as they impact the onto the workpiece surface and forming a dense, tightly adhering cohesive coating. Preferably the powder material is of metals, alloys, polymers and mixtures thereof or with semiconductors or ceramics and the powder material is preferably of a particle size range exceeding 50 microns. The system also includes a rotating member for coating concave surfaces and internal bores or other such devices which can be better coated using rotation.
Owner:FLAME SPRAY IND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products