Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

864 results about "Plasma Gases" patented technology

Compressed air, nitrogen, argon, hydrogen and oxygen, or blends of two or three of these components are the most popular plasma gases for plasma cutting.

System and method for treating biological tissue with a plasma gas discharge

Devices and methods for treating biological tissue using a plasma gas-discharge are disclosed herein. An electrode for igniting a gas flow to form a plasma gas-discharge, wherein the electrode is configured within the device such that upon encountering a surface of the biological tissue by the electrode, a path of current from the electrode to the surface of the biological tissue is formed, thereby igniting the gas flow and forming the plasma gas-discharge. In some embodiments, electromagnetic interactions between the treated biological tissue and the plasma gas discharge traversing the electromagnetic interaction gap shape the profile of the plasma gas discharge. According to some embodiments, the device includes an electrode for igniting gas of the gas flow, and electromagnetic interactions between the electrode and the skin determine, at least in part, the electromagnetic interactions that shape the profile of the plasma gas discharge. In some embodiments, the device further includes a housing for providing support for the electrode, wherein the electrode is disposed relative to the housing such that the electrode is substantially electrically unshielded by the housing, and the electrode is positioned to electromagnetically interact with a surface of the biological tissue to shape, at least in part, the plasma profile. According to some embodiments, the presently disclosed device includes a dual-purpose nozzle-electrode for gas delivery and for igniting the gas flow. A method of transdermal ion delivery of a plasma flux to biological tissue as a means of treating the biological tissue is also provided.
Owner:ALMA LASERS LTD

Carbon nanostructures and process for the production of carbon-based nanotubes, nanofibres and nanostructures

Continuous process for the production of carbon-based nanotubes, nanofibres and nanostructures, comprising the following steps: generating a plasma with electrical energy, introducing a carbon precursor and/or one or more catalysers and/or carrier plasma gas in a reaction zone of an airtight high temperature resistant vessel optionally having a thermal insulation lining, vaporizing the carbon precursor in the reaction zone at a very high temperature, preferably 4000° C. and higher, guiding the carrier plasma gas, the carbon precursor vaporized and the catalyser through a nozzle, whose diameter is narrowing in the direction of the plasma gas flow, guiding the carrier plasma gas, the carbon precursor vaporized and the catalyses into a quenching zone for nucleation, growing and quenching operating with flow conditions generated by aerodynamic and electromagnetic forces, so that no significant recirculation of feedstocks or products from the quenching zone into the reaction zone occurs, controlling the gas temperature in the quenching zone between about 4000° C. in the upper part of this zone and about 50° C. in the lower part of this zone and controlling the quenching velocity between 103 K/s and 106 K/s quenching and extracting carbon-based nanotubes, nanofibres and other nanostructures from the quenching zone, separating carbon-based nanotubes, nanofibres and nanostructures from other reaction products.
Owner:ТІМКАЛ SА +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products