Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2986results about How to "Weaken energy" patented technology

Method and system for energy management via energy-aware process scheduling

A method and system for energy management via energy-aware process scheduling provides per-process energy use / power dissipation control to manage system energy requirements and thermal conditions without throttling overall system performance. Use of energy by a particular process is measured or is estimated from resource requirements that are determined by the operating system or reported by the application owning the process. The scheduler then determines whether or not to allocate execution slices to the process in conformity with the measured or estimated energy requirements of the process. The scheduler may insert “idle” execution slices to reduce energy use / power dissipation or may prefer low energy-use processes over high energy-use processes. Pragmatic faults may be issued as warnings from the operating system to an application to indicate that energy requirements need to be curtailed. If the warning sent to the application does not result in sufficient energy use / power dissipation reduction, then the scheduler may implement the selective allocation of slices to processes that have an excessive energy requirement. The scheduler may be notified of such a condition through pragmatic “critical” faults that indicate a higher degree of severity than the previously-issued warning faults.

Electrosurgical working end for controlled energy delivery

An electrosurgical working end for instant and automatic modulation of active Rf density in a targeted tissue volume. The working end of the probe of the present invention defines a tissue-engagement plane that is adapted to contact the targeted tissue. The cross-section energy delivery apparatus comprises (i) a conductive surface engagement plane for tissue contact, (ii) a substrate comprising a medial conductive matrix of a temperature sensitive resistive material; and (iii) an inner or core conductive material (electrode) that is coupled to an Rf source and controller. Of particular interest, the medial conductive matrix comprises a positive temperature coefficient (PTC) that exhibits very large increases in resistivity as it increases beyond a selected temperature, which is described as a switching range. The PTC material is selected and fabricated to define a switching range that approximates a particular thermally-mediated therapy. In a method of use, it can be understood that the engagement plane will apply active Rf energy to the engaged the tissue temperature elevates the medial PTC conductive layer to its switching range. Thereafter, Rf current flow from the core conductive to the engagement surface will be instantly modulated to maintain tissue temperature at the switching range. Moreover, the conductive matrix effectively functions as a resistive electrode to thereafter passively conduct thermal energy to the engaged tissue above its switching range. Thus, the working end can modulate the energy application to tissue between active Rf heating and passive conductive heating of the targeted tissue to maintain a targeted temperature level.

Point-to-Point Transaction Guidance Apparatuses, Methods and Systems

The Point-to-Point Transaction Guidance Apparatuses, Methods and Systems (“SOCOACT”) transforms smart contract request, crypto currency deposit request, crypto collateral deposit request, crypto currency transfer request, crypto collateral transfer request inputs via SOCOACT components into transaction confirmation outputs. Also, SOCOACT transforms virtual wallet address inputs via SOCOACT (e.g., P2PTG) components into transaction confirmation outputs. In one embodiment, the SOCOACT includes a point-to-point payment guidance apparatus, comprising, a memory and processor disposed in communication with the memory, and configured to issue a plurality of processing instructions from the component collection stored in the memory, to: obtain a target wallet identifier registration at a beacon. The SOCOACT then may register the target wallet identifier with the beacon and obtain a unique wallet identifier from a migrant wallet source associated with a user at the beacon. The SOCOACT may then obtain a target transaction request at the beacon from the migrant wallet source and commit the target transaction request for the amount specified in the target transaction request to a distributed block chain database configured to propagate the target transaction request across a distributed block chain database network for payment targeted to the target wallet identifier registered at the beacon.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products