Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2225results about How to "Energy efficiency" patented technology

Jaw structure for electrosurgical instrument and method of use

An electrosurgical medical device and technique for creating thermal welds in engaged tissue that provides very high compressive forces. In one exemplary embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying first and second surface portions that comprise (i) an electrically conductive material and (ii) a positive temperature coefficient (PTC) material having a selected increased resistance that differs at each selected increased temperature over a targeted treatment range. One type of PTC material is a doped ceramic that can be engineered to exhibit a selected positively sloped temperature-resistance curve over about 37° C. to 100° C. The 70° C. to 100° C. range can bracket a targeted “thermal treatment range” at which tissue welded can be accomplished. The engineered resistance of the PTC matrix at the upper end of the temperature range will terminate current flow through the matrix. In one mode of operation, the engagement plane cause ohmic heating within tissue from Rf energy delivery tissue PTC matrix is heated to exceed the treatment range. Thereafter, energy density in the engaged tissue will be modulated as the conductivity of the second portion hovers within the targeted treatment range to thereby provide optical tissue heating for purposes of tissue welding.
Owner:ETHICON ENDO SURGERY INC

Jaw structure for electrosurgical instrument

An electrosurgical medical device for creating thermal welds in engaged tissue that provides general grasping and dissecting functionality. In an exemplary embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying electrosurgical energy delivery means. The jaw assembly, in one mode of operation, can be used for general grasping and dissecting purposes wherein the jaws close in a non-parallel manner so that the distalmost jaw tip only engage tissue with little movement of the actuator lever in the handle of the instrument. In another mode of operation, the jaw assembly closes close in a parallel manner under very high compression to enable tissue welding.
Owner:ETHICON ENDO SURGERY INC

Energy Efficient Methods to Produce Products

The invention relates to processes that efficiently convert carbon-containing materials, such as biomass, into products in such a manner that the energy, carbon, and mass content of the materials are efficiently transferred into such products. Such methods include converting the materials into at least one intermediate by a biological conversion process and at least one intermediate by a thermochemical conversion process and reacting the intermediates to form the product. Such methods have a chemical energy efficiency to produce the product that is greater than the chemical energy efficiency of a solely biological conversion process to produce the product and that is greater than the chemical energy efficiency of a process in which all of the material is initially subjected to a thermochemical conversion step as part of the process to produce the product.
Owner:ZEACHEM

Method for low-energy adaptive clustering hierarchy

A method and network architecture for implementing an energy efficient network. The network includes a plurality of nodes that collect and transmit data that are ultimately routed to a base station. The network nodes form a set of clusters with a single node acting as a cluster-head. The cluster-head advertises for nodes to join its cluster, schedules the collection of data within a cluster, and then transmits the data to the base station. A cluster can intelligently combine data from individual nodes. After a period of operation, the clusters are reformed with a different set of nodes acting as cluster-heads. The network provides an increased system lifetime by balancing the energy use of individual nodes.
Owner:MASSACHUSETTS INST OF TECH

System and method for secure relayed communications from an implantable medical device

The present invention provides systems and methods for supporting encrypted communications with a medical device, such as an implantable device, through a relay device to a remote server, and may employ cloud computing technologies. An implantable medical device is generally constrained to employ a low power transceiver, which supports short distance digital communications. A relay device, such as a smartphone or WiFi access point, acts as a conduit for the communications to the internet or other network, which need not be private or secure. The medical device supports encrypted secure communications, such as a virtual private network technology. The medical device negotiates a secure channel through a smartphone or router, for example, which provides application support for the communication, but may be isolated from the content.
Owner:POLTORAK TECH

Electrosurgical working end for controlled energy delivery

An electrosurgical working end for instant and automatic modulation of active Rf density in a targeted tissue volume. The working end of the probe of the present invention defines a tissue-engagement plane that is adapted to contact the targeted tissue. The cross-section energy delivery apparatus comprises (i) a conductive surface engagement plane for tissue contact, (ii) a substrate comprising a medial conductive matrix of a temperature sensitive resistive material; and (iii) an inner or core conductive material (electrode) that is coupled to an Rf source and controller. Of particular interest, the medial conductive matrix comprises a positive temperature coefficient (PTC) that exhibits very large increases in resistivity as it increases beyond a selected temperature, which is described as a switching range. The PTC material is selected and fabricated to define a switching range that approximates a particular thermally-mediated therapy. In a method of use, it can be understood that the engagement plane will apply active Rf energy to the engaged the tissue temperature elevates the medial PTC conductive layer to its switching range. Thereafter, Rf current flow from the core conductive to the engagement surface will be instantly modulated to maintain tissue temperature at the switching range. Moreover, the conductive matrix effectively functions as a resistive electrode to thereafter passively conduct thermal energy to the engaged tissue above its switching range. Thus, the working end can modulate the energy application to tissue between active Rf heating and passive conductive heating of the targeted tissue to maintain a targeted temperature level.
Owner:SURGRX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products