Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4501 results about "Dc current" patented technology

DC (direct current) is the unidirectional flow or movement of electric charge carriers (which are usually electrons). The intensity of the current can vary with time, but the general direction of movement stays the same at all times.

High efficiency digital transmitter incorporating switching power supply and linear power amplifier

A novel apparatus and method of improving the power efficiency of a digital transmitter for non-constant-amplitude modulation schemes. The power efficiency improvement mechanism of the invention leverages the high efficiency of a switched-mode power supply (SMPS) that supplies the high DC current to the transmitter's power amplifier, while compensating for its limitations using predistortion. The predistortion may be achieved using any suitable technique such as digital signal processing, hardware techniques, etc. A switched mode power supply (i.e. switching regulator) is used to provide a slow form (i.e. reduced bandwidth) of envelope tracking (based on a narrower bandwidth distorted version of the envelope waveform) such that the switching regulator can use a lower switching rate corresponding to the lower bandwidth, thereby obtaining high efficiency in the switching regulator. The resulting AM-AM and AM-PM distortions in the power amplifier are compensated through predistortion of the digital amplitude modulating signal which dictates the envelope at the PA input. Similarly, the phase modulation is also compensated prior to the PA, such that once it undergoes the distortion in the PA, the end result is sufficiently close to the desired phase.
Owner:TEXAS INSTR INC

Transformerless static voltage inverter for battery systems

A static inverter for a battery of elementary, current sources or cells electrically in series and a number N of intermediate voltage taps along the chain of elementary DC current sources, wherein the number of elementary cells comprised between an intermediate tap and another intermediate tap adjacent to it or an end terminal of said chain is proportionate to the amplitude in the respective phase interval of a number N of discretization phases of the waveform of the AC voltage to be output in a quadrant; is implemented by arranging for: a number N of power switches each connecting a respective intermediate tap and a first end terminal of a first polarity of said chain of elementary cells in series to a common circuit node of said first polarity; an output bridge stage constituted by at least four power switches controlled in pairs for switching the current paths through the bridge stage, having a first pair of nodes coupled to said common circuit node of said first plurality and to the other end terminal of polarity opposite to said first polarity of said chain of elementary cells, respectively, and a second pair of nodes constituting an AC output; and a control circuit sequentially and cyclically turning on, in a continuous manner, one switch at the time of said N switches; each for a phase interval of 1/(4N) times the period of said AC output, and alternately tuning on by pairs said four power switches of said output bridge stage at every half a period.
Owner:SQUIRREL HLDG

Load breaker arrangement

The subject matter of the present invention is a load breaker arrangement (1) for switching on and off a DC current of a DC current circuit in a photovoltaic plant with a semiconductor switching element (4) to avoid a switching arc, there being provided an electronic control unit (5) configured such that one or more signals are received by the control unit, and the load breaker arrangement (1) being configured such that in at least one current-carrying line of the DC current circuit there is galvanic separation by a switching contact that is automatically controllable by the control unit (5) in the switched-off condition and one or more control signals being transmitted to the load breaker arrangement (1) and a semiconductor switching element (4) interrupting the DC current so that the switching contact is de-energized, whereby
    • the signals are flaw signals that are received in case of a flaw in the PV generator, inverter or on the AC side, the DC current circuit being automatically switched on or off by the control signals in case of at least one flaw,
    • said arrangement being configured such that, during switch off,
    • said semiconductor switching element (4) is at first closed in a first step,
    • the switching contacts (K1, K2) of a first switching means are opened in a second step for the DC current to flow through said semiconductor switching element (4),
    • said semiconductor switching element (4) being again opened in a third step and
    • switching contacts (K1, K2) of a second switching means being opened in order to cause galvanic separation to occur
    • and that an additional manually operable load breaker (8) is connected, said manually operable load breaker (8) being a manually breakable DC current connecting system with plug contacts for photovoltaic plants that is provided with an electronic arc quenching system.
Owner:SMA SOLAR TECH AG

Wind-solar-diesel storage isolated microgrid system and control method thereof

The invention belongs to the technical field of distributed power generation microgrid systems in power systems and relates to a wind-solar-diesel storage isolated microgrid system which comprises a lead-acid battery, one group or multiple groups of photovoltaic battery arrays, a fan, a diesel generator, a microgrid monitoring sub-system, a controllable load and an uncontrollable load, wherein the fan comprises more than one wind turbine generator or more than one group of wind turbine generator set, the lead-acid battery and the photovoltaic battery arrays are merged into a direct current bus bar through all front-stage two-way DC (direct current)/DC converters and connected into an alternating current bus bar through a two-way DC/AC (alternating current) inverter, the diesel generator is merged into the direct current bus bar through an AC/DC current converter, the wind turbine generator set is connected into the alternating current bus bar through an AC/DC/AC converter, the microgrid monitoring sub-system is used for controlling voltage and the frequency in a microgrid to be stable. The invention simultaneously provides a coordinated operation control method for the system. Thewind-solar-diesel storage isolated microgrid system has stronger robustness and flexibility, and can meet the long-term high-efficient stable operation requirement of the isolated microgrid system.
Owner:苏州钧灏电力有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products