Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2223 results about "Power factor corrector" patented technology

Multipurpose, universal Converter with battery control and real-time Power Factor Correction.

The Electric Power Converter has the qualifications for an uninterruptable power supply, battery management, energy conversion, micro-grid formation, Power Factor Correction including Total Harmonic Distortion correction in real time. Uninterruptable power supply's use is for always-on, real-time, all-time, reduced distortion with functions of load reduction and management during peak load events. The Electric Power Converter as well has the ability to provide maintenance for most types of batteries including charging and discharge regiments to increase the overall lifetime of a battery, the maintenance, incorporating restorative functions that can refurbish dead batteries or can further increase the overall efficiency and useful function of weaker/aged/defective batteries. Energy conversion capabilities allow for the conversion of AC or DC to AC or DC with high efficiency and ability to actively vary the frequency in accordance to the required parameters. The Electric Power Converter is able to establish and sustain a micro-grid with multiple and varying sources of power generation and load conditions. The Electric Power Converter is achieving dynamic, real-time, interactive Power Factor Correction (PFC) function with advanced voltage harmonic distortion correction with a high efficiency ratio. The Electric Power converter is designed to function with the emerging Smart Grid technologies and provide an overall higher level of operating efficiency and higher quality of electrical power.
Owner:3DFS L L C

Topology and control method for power factor correction

In a power factor corrected AC-to-DC power supply system, a DC-to-DC power converter is coupled to the output of an AC-to-DC power converter in order to produce a regulated DC output signal from a rectified AC input signal. The AC-to-DC power converter and the DC-to-DC power converter each includes a switch for controlling the operation of their respective power converter. The AC-to-DC converter includes an inductor. The system provides power factor correction for minimizing harmonic distortion by including a controller that receives the regulated DC output voltage as a feedback signal, and in response, produces a series of drive pulses having predetermined constant duty cycle. These pulses are simultaneously fed to each switch, to operate the respective converters alternately between ON and OFF states. When the AC-to-DC converter is driven by a fixed duty cycle of the series of pulses, power factor correction is improved since the current flowing through the inductor is substantially proportional to the waveform of the rectified AC input signal. By preselecting the value of the inductor, the AC-to-DC converter is operable in a discontinuous mode when the instantaneous rectified AC input signal is low and in a continuous mode when the instantaneous rectified AC input signal is high.
Owner:ASTEC INT LTD

Power factor corrected single-phase AC-DC power converter using natural modulation

A power factor corrected (pfc) ac-dc converter has a modified boost input and a modified buck output. Unlike the prior art boost input, the boost switch returns to the output, not to ground. Unlike the prior art buck output stage, a third switch connects to the input. This allows much of the input current to pass through the converter to the output. There is no input current measurement, but nearly ideal power factor correction is achieved through “natural modulation.” A preferred pfc ac-dc converter uses a variable dc-dc transformer on its output, as a post regulator, to provide dielectric isolation and to provide voltage level shifting. The output of the pfc ac-dc converter has the control characteristics of a buck converter, so it is a natural mate for the variable dc-dc transformer. An ac-dc buck converter is most efficient at its maximum duty cycle. It cannot regulate for a lower input voltage, but it can reduce its duty-cycle to control for higher input voltages. A variable dc-dc transformer is most efficient at its maximum ratio. It cannot regulate for a higher input voltage, but it can reduce its effective turns ratio to control for a lower input voltage. With a small overlap in their control ranges, both parts of the power system can operate at maximum efficiency. The variable dc-dc transformer controls the output voltage for nominal and low input voltage. The ac-dc buck converter limits over-voltage transients.
Owner:HERBERT EDWARD

One cycle control PFC boost converter integrated circuit with inrush current limiting, fan motor speed control and housekeeping power supply controller

ActiveUS7068016B2Eliminating redundant switching circuitsSimplifies inclusionBatteries circuit arrangementsEfficient power electronics conversionMotor speedCycle control
A power factor corrected boost converter circuit includes a rectifier connectable to an ac input and having a rectified dc output provided across a dc bus, an inductor having first and second terminals connected in one leg of the dc bus, an integrated circuit comprising a control circuit for controlling a switch, the integrated circuit including a housing enclosing the control circuit, the integrated circuit having a power terminal, a ground terminal, a first control input terminal coupled to an output of the converter circuit, and a second control input terminal coupled to a sensor for sensing current in the dc bus and further having an output terminal connected to the switch, a boost rectifier diode having a first terminal, the diode coupled to the inductor, and a storage capacitor connected to the diode. The control circuit comprises a one cycle control circuit having an integrator reset by a clock signal for each cycle of the clock signal. The circuit further includes any or all of an inrush current limiting circuit for limiting the current through the inductor to a value below a predetermined level, a fan motor speed controller and a housekeeping power supply controller.
Owner:INFINEON TECH AMERICAS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products