Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3264 results about "Fast charging" patented technology

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7184836B1Assures safe and reliable operation of systemFirmly connectedElectrotherapyLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Fast charging occurs at safer lower battery voltages (e.g., battery voltage above about 2.5 V), and slower charging occurs when the battery nears full charge higher battery voltages (e.g., above about 4.0 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Implantable devices using rechargeable zero-volt technology lithium-ion batteries

InactiveUS7295878B1Assures safe and reliable operation of systemFirmly connectedImplantable neurostimulatorsLoad circuitLow voltage
An implantable medical device, such as an implantable pulse generator (IPG) used with a spinal cord stimulation (SCS) system, includes a rechargeable lithium-ion battery having an anode electrode with a substrate made substantially from titanium. Such battery construction allows the rechargeable battery to be discharged down to zero volts without damage to the battery. The implantable medical device includes battery charging and protection circuitry that controls the charging of the battery so as to assure its reliable and safe operation. A multi-rate charge algorithm is employed that minimizes charging time while ensuring the battery cell is safely charged. Slow charging occurs at lower battery voltages (e.g., battery voltage below about 2.5 V), and fast charging occurs when the battery voltage has reached a safe level (e.g., above about 2.5 V). When potentially less-than-safe very low voltages are encountered (e.g., less than 2.5 V), then very slow (trickle) charging occurs to bring the battery voltage back up to the safer voltage levels where more rapid charging can safely occur. The battery charging and protection circuitry also continuously monitors the battery voltage and current. If the battery operates outside of a predetermined range of voltage or current, the battery protection circuitry disconnects the battery from the particular fault, i.e. charging circuitry or load circuits.
Owner:QUALLION +1

Arrangement for generating extreme ultraviolet (EUV) radiation based on a gas discharge

The invention is directed to a method and an arrangement for generating extreme ultraviolet (EUV) radiation, i.e., radiation of high-energy photons in the wavelength range from 11 to 14 nm, based on a gas discharge. The object of the invention, to find a novel possibility for generating EUV radiation in which an extended life of the system is achieved with stable generation of a dense, hot plasma column, is met according to the invention in that a preionization discharge is ignited between two parallel disk-shaped flat electrodes prior to the main discharge by a surface discharge along the superficies surface of a cylindrical insulator with a plasma column generated through the gas discharge with pulsed direct voltage, which preionization discharge carries out an ionization of the working gas in the discharge chamber by means of fast charged particles. The preionization discharge is triggered within a first electrode housing and the main discharge takes place between a narrowed output of the first electrode housing and a part of the second electrode housing close to the outlet opening of the discharge chamber. The plasma develops in a part of the second electrode housing covered by a tubular insulator and, as a result of the current-induced magnetic field, contracts to form a dense, hot plasma column, one end of which is located in the vicinity of the outlet opening of the second electrode housing.
Owner:USHIO DENKI KK

Mobile terminal, direct charging power adapter and charging method

The invention discloses a mobile terminal, a direct charging power adapter and a charging method. The charging method comprises the steps that firstly, the direct charging power adapter is arranged and is in communication with the mobile terminal in a UART communication mode; secondly, according to the difference of the configuration conditions of communication pins of different charged devices, a charging type identification strategy is designed in the mobile terminal, and accordingly automatic identification of the mobile terminal on the types of external devices is achieved. Meanwhile, a special fast charging mode is designed for the direct charging power adapter; charging voltage output by the direct charging power adapter is used for conducting high-current direct charging on a battery during the period when centralized charging is conducted on the battery of the mobile terminal, and the volt value of the charging voltage is adjusted dynamically according to change of the voltage of the battery; thus, on the premise of ensuring battery charging safety, the charging speed of the battery is substantially increased, the time required for charging the mobile terminal every time is shortened, and the influence caused when the mobile terminal needs to be charged frequently for a long time on a user during daily use is reduced.
Owner:QINGDAO HISENSE MOBILE COMM TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products